CONTROL OF MECHANICAL SYSTEMS

CONTROL OF MECHANICAL SYSTEMS
2 YEAR
1 semester 9 CFU
Riccardo MARINO A.Y. 2021-22

A.Y. 2022-23

Code: 8039823
SSD: ING-INF/04

LEARNING OUTCOMES:

Ability to understand scientific papers on the control of mechanical systems

KNOWLEDGE AND UNDERSTANDING:

Knowledge of dynamic modeling of mechanical systems. Knowledge of basic feedback control techniques for single input single output systems and of decoupling techniques for multi input multi output nonlinear systems

APPLYING KNOWLEDGE AND UNDERSTANDING:

Ability to simulate using Matlab Simulink complex controlled mechanical systems

MAKING JUDGEMENTS:

Ability to evaluate stability, robustness, and performance of a control system

COMMUNICATION SKILLS: Ability to present and discuss an autonomous design project

LEARNING SKILLS: Ability to fully understand a scientific paper on the control of mechanical systems

SYLLABUS:

BASIC CONTROL TOOLS
Bounded- input bounded- output linear systems. Pole placement theorem for controllable and observable linear systems. Luenberger observers for observable systems. Design of dynamic compensators for linear systems. Integral feedback control to reject constant disturbances. PID control. System inverses for minimum phase linear systems. The combination of feedback and feedforward control actions.
ADVANCED CONTROL TOOLS
Linear approximations of nonlinear control systems about operating conditions. The definition of region of attraction for an operating condition. Output feedback compensators with integral actions to control nonlinear systems about a given operating condition. Liapunov matrix equations to determine quadratic Liapunov functions and assess the region of attraction. The definition of the sensitivity transfer function and its properties. The gang of four: sensitivity, complementary sensitivity, load sensitivity and noise sensitivity functions. How to determine the robustness of a control loop using the gang of four functions. Bode’s integral formula and the limitations imposed by unstable open loop poles. Youla parametrization to design stable compensation. Kalman filters, Riccati equations and robust control design.

CONTROL DESIGN FOR MULTIVARIABLE NONLINEAR SYSTEMS
Relative degree for a single input single output nonlinear system. State feedback control design for input-output linearization. State feedback linearization when the relative degree is equal to the state space dimension. The definition of nonlinear inverse systems. Relative degrees or decoupling indices for multivariable (multi-input, multi-output) nonlinear systems. The definition of the decoupling matrix. State feedback control design for input-output linearization when the decoupling matrix is full rank using the Penrose pseudoinverse. State feedback linearization when the sum of relative degrees is equal to the state space dimension and the decoupling matrix is full rank.

CASE STUDIES OF NONLINEAR MECHANICAL CONTROL SYSTEMS
Control of bycicles, robots, vehicles and aircrafts

ROBOT MECHANICS

ROBOT MECHANICS
1 YEAR (Blocks B|C)
2 YEAR (Blocks A)
1 semester 9 CFU
Marco Ceccarelli A.Y. 2021-22

A.Y. 2022-23

Code: 8039785
SSD: ING-IND/13

LEARNING OUTCOMES:

 The aims of the course are related to explaining the modeling and algorithms for the analysis and design of the functioning of robot mechanisms in terms of mechanical performance. The students will learn how to handle the mechanics of robot by acquiring skills in analyzing and design robots for manipulation tasks in industrial and service applications.

KNOWLEDGE AND UNDERSTANDING:

during the course, problems and characteristics of robotic systems structures and operations are presented to increase students’ knowledge and to allow them to understand problems and solutions in the specific area of ​​robotics

APPLYING KNOWLEDGE AND UNDERSTANDING:

Students are required to apply the characteristics and algorithms for the analysis of manipulations and robotizations of specific robotic systems for merit assessments and demonstrate specific presentation and discussion skills of robotics issues.

MAKING JUDGEMENTS:

Students are involved in the presentation of the modeling and in the discussion of the problems to learn to examine in an autonomous and critical way the problems of analysis of robotic systems.

COMMUNICATION SKILLS:

During the course, the students take part in the discussion of the presented topics and at the end of the course present a report of manipulation and robotization analysis of their choice.

LEARNING SKILLS:

During the course, the students are involved in the discussion for a continuous stimulus to verify the learning and presentation of robot mechanics. the learning achieved is also verified in the presentation of the elaboration of manipulation and robotization analysis of their choice

SYLLABUS:

types of robots and industrial and service applications; components, technical characteristics, and evaluation; analysis and evaluation of manipulative movements; types of manipulators; Denavit-Hartenberg’s notation; fundamentals of direct kinematics; workspace analysis, trajectory planning; fundamentals of statics and dynamics: modeling, actions, equilibrium conditions; equation of motion; fundamentals of the regulation and control of the motion; types and functionality of grippers; grasp mechanics: modeling, actions, equilibrium conditions; mobile service robots: structures and operation; parallel architecture robots; service robots for medical applications: structures and operation; preparation of performance analysis reports of a robot.