NANOTECHNOLOGY

NANOTECHNOLOGY
1 YEAR II semester  6 CFU
Antonio Agresti (3cfu)

Francesca De Rossi (3cfu)

A.Y. 2021-22
Antonio Agresti (3cfu)

Fabio Matteocci (3cfu)

A.Y. 2022-23
Code:
SSD: ING-INF/01

LEARNING OBJECTIVES AND EXPECTED LEARNING OUTCOMES:

LEARNING OUTCOMES:
The first part of the Nanotechnology course introduces thin film depositions using both physical and chemical vapour depositions. The main objective is the knowledge of the potential and limits of the different thin film depositions in the nanotechnology field. Particular attention is destinated to the deposition technique used in micro and nanoelectronics based on semiconductors using top-down and bottom-up approaches. The interaction of both approaches has been discussed with the student in order to share the importance of multidisciplinary knowledge (physics, chemistry and engineering) where the nanotechnology field is based. The final part of module 1 is destinated to the introduction of the case study of the course about the thin film fabrication of an emergent photovoltaic technology: the perovskite solar cells. In particular, the study of the optoelectronic properties of the materials and the fabrication of several device architectures is important to understand the important role of the manufacturing design in thin film photovoltaic technologies destinated at the industrial level.

KNOWLEDGE AND UNDERSTANDING:
Regarding the first module, at the end of the course, the student will have a clear overview of the main deposition technique studied and applied in nanotechnology for different application fields.
Regarding the second module, at the end of the course, the student will know the main characterization techniques for nanostructured materials and electronic and optoelectronic devices till nanometric size.

APPLYING KNOWLEDGE AND UNDERSTANDING:
The student will be able to recognize the applicability areas for the various characterization and realization techniques at nanometric scales. She/He will also be able to apply the knowledge and understanding developed during the course to study and understand recent literature.

MAKING JUDGEMENTS:
The transversal preparation provided by the course implies
1) the student’s capability to integrate knowledge and manage complexity
2) the student’s ability to deal with new and emerging areas in nanotechnology application to energy and nanoelectronics.

COMMUNICATION SKILLS:
The student will be able to clearly and unequivocally communicate the course content to specialized interlocutors. He will also be able to communicate the main physico-chemical characteristics of nanostructured materials and to indicate the most appropriate deposition/processing technique of these materials to technical interlocutors (example: other engineers, physicists, chemists) but not specialists in the field of electronics or devices. The student will also have a sufficient background to undertake a thesis/research work in modern nanotechnology laboratories.

LEARNING SKILLS:
The structure of the course contents, characterized by various topics apparently separated but connected by an interdisciplinary and modular vision, will contribute to developing a systemic learning capacity that will allow the student to approach in a self-directed or autonomous way to other frontier problems on nanotechnology application to energy and nanoelectronics. Furthermore, the student will be able to read and understand recent scientific literature.

 

SYLLABUS

 

First Module: 1 Prof. Antonio Agresti (3 cfu)

1) Quantum Mechanics and p-n junction

2 )Solar Cells: main electrical characterization techniques

3) Absorbance and Fluorescence Spectroscopy

4) Electron scanning microscopy (SEM)

5) Electron transmission microscopy (TEM)

6) Scanning tunneling microscopy (STM)

7) Atomic force microscopy (AFM)

8) Kelvin Probe Microscopy (KPFM)

9) Raman spectroscopy

10) Bi-Dimensional Materials

 

Second module – Prof. Fabio Matteocci (3cfu)

 

1) Introduction to nanotechnology and thin film properties;
2) Thin Film Deposition: the importance of vacuum and plasma;
3) Thermal Evaporation: Working mechanism, material properties, deposition parameters and applications;
4) DC and RF Sputtering: Working mechanism, material properties, deposition parameters and applications;
5) Pulsed Laser Deposition: Working mechanism, material properties, deposition parameters and applications;
6) Chemical Vapour Deposition: Working mechanism, material properties, deposition parameters and applications;
7) Atomic Layer Deposition: Working mechanism, material properties, deposition parameters and applications;
8) Solution Processing: Spin coating, Screen Printing, Blade Coating, Slot die coating;
9) Patterning Procedures: Photolithography and Laser Ablation;
10) Introduction to Perovskite Solar Cell: Working mechanism, material properties, deposition techniques, up-scaling process and applications;
11) Building Integration Photovoltaics;

VLSI CIRCUIT AND SYSTEM DESIGN

VLSI
1 YEAR II semester  9 CFU
Luca DI NUNZIO A.Y. 2021-22
Luca DI NUNZIO (5 cfu)

Vittorio MELINI (2 cfu)

Sergio SPANO’ (2 cfu)

A.Y. 2022-23
Code:
SSD: ING-INF/01

LEARNING OUTCOMES:

The VLSI CIRCUIT AND SYSTEM DESIGN course aims to teach the basics of combinational and sequential circuits that represent the basic blocks of any modern digital system. In addition, the course will provide the basic concepts of the VHDL language

KNOWLEDGE AND UNDERSTANDING:

At the end of the course, the student will learn the basic concepts of combinational and sequential circuits that are the basis of any system and the basic concepts of the VHDL language useful for the design of digital systems

APPLYING KNOWLEDGE AND UNDERSTANDING:

Ability to analyze the characteristics of digital circuits with particular emphasis on timing and power consumption.

MAKING JUDGEMENTS:

The student will understand the acquired knowledge independently and critically to be able to connect and integrate the various aspects related to the design of digital systems

COMMUNICATION SKILLS:

The student must be able to communicate their knowledge acquired during the course in clear, correct, and technical language.

LEARNING SKILLS:

Ability to critically approach a digital circuit design problem, know how to manage it, and find implementation solutions using the VHDL language

SYLLABUS:

(L. DI NUNZIO)

Digital electronics basic concepts
Floating-point and fixed-point numeric representation formats
Combinatorial circuits: encoders, decoders, multiplexers
Sequential circuits: flip flops, latch registers, counters, memories
Introduction to VHDL: entity and architecture, levels of abstraction, HDL design flow, combinatorial and sequential processes, objects in VHDL test bench
Practical activities of circuit design in VHDL

(S. SPANO’)

Central unit
ALU
System registers
Address logic
System buses
Scheduler
Branching of instructions
Interrupts
Bus synchronization
RAM memories
ROM memories
Flash memories
CAM memories

 

FEEDBACK CONTROL SYSTEMS (block B)

FEEDBACK CONTROL SYSTEMS (block B)
1 YEAR II semester  6 CFU
Cristiano M. VERRELLI A.Y. 2021-22
A.Y. 2022-23
Code:
SSD: ING-INF/04

FORMATIVE OBJECTIVES

LEARNING OUTCOMES:

The theory of differential equations is successfully used to gain profound insight into the fundamental mathematical control design techniques for linear and nonlinear dynamical systems.

KNOWLEDGE AND UNDERSTANDING:

Students should be able to deeply understand (and be able to use) the theory of differential equations and of systems theory, along with related mathematical control techniques.

APPLYING KNOWLEDGE AND UNDERSTANDING:

Students should be able to design feedback controllers for linear (and even nonlinear) dynamical systems.

MAKING JUDGEMENTS:

Students should be able to identify the specific design scenario and to apply the most suitable techniques. Students should be able to compare the effectiveness of different controls while analyzing theoretical/experimental advantages and drawbacks.

COMMUNICATION SKILLS: Students are expected to be able to read and capture the main results of a technical paper concerning the topics of the course, as well as to effectively communicate in a precise and clear way the content of the course. Tutor-guided individual projects (including Maple and Matlab-Simulink computer simulations as well as visits to labs) invite intensive participation and ideas exchange.

LEARNING SKILLS:

Being enough skilled in the specific field to undertake the following studies characterized by a high degree of autonomy.

SYLLABUS:

The matrix exponential; the variation of constants formula.

Computation of the matrix exponential via eigenvalues and eigenvectors and via residual matrices. Necessary and sufficient conditions for exponential stability: Routh-Hurwitz criterion. Invariant subspaces.

Impulse responses, step responses and steady state responses to sinusoidal inputs. Transient behaviours. Modal analysis: mode excitation by initial conditions and by impulsive inputs; modal observability from output measurements; modes which are both excitable and observable. Popov conditions for modal excitability and observability. Autoregressive moving average (ARMA) models and transfer functions.

Kalman reachability conditions, gramian reachability matrices and the computation of input signals to drive the system between two given states. Kalman observability conditions, gramian observability matrices and the computation of initial conditions given input and output signals. Equivalence between Kalman and Popov conditions.

Kalman decomposition for non-reachable and non-observable systems.

Eigenvalues assignment by state feedback for reachable systems. Design of asymptotic observers and Kalman filters for state estimation of observable systems. Design of dynamic compensators to stabilize any reachable and observable system. Design of regulators to reject disturbances generated by linear exosystems.

Bode plots. Static gain, system gain and high-frequency gain.

Zero-pole cancellation.