Deep Learnig and applications (block C-opt)

1 YEAR II semester  6 CFU

Eugenio Martinelli
A.Y. 2024-25
Didatticaweb
Code:
SSD: ING-INF/01

Description: The course, starting from the principles of deep learning, will bring the students to study, analyze, and use all the main DL algorithms in different application scenarios. During the course, theory lessons will also be coupled with practical sessions where the algorithm will be applied to real data.

Electronic Interfaces (block B-opt) (since 2022-23)

Electronic Interfaces (block B-opt) (since 2022-23)
1 YEAR II semester  6 CFU
Christian Falconi A.Y. 2022-23 (new)
Code: 80300103
SSD: ING-INF/01

FORMATIVE OBJECTIVES

LEARNING OUTCOMES:
The goal is to teach the fundamental principles and tools for designing electronic interfaces.
The contents of the course have general validity, but the focus will be on electronic interfaces for mechatronics.
The course is oriented toward design.

KNOWLEDGE AND UNDERSTANDING:
Students will need to know and understand the fundamental principles and tools for the analysis and design of electronic interfaces.

APPLYING KNOWLEDGE AND UNDERSTANDING:
Students will have to demonstrate that they are able to design electronic interfaces.

MAKING JUDGEMENTS:
Students will be able to evaluate the design of electronic interfaces.

COMMUNICATION SKILLS:
The students, in addition to illustrating the fundamental principles and tools for the design of electronic interfaces, must be able to explain each design choice.

LEARNING SKILLS:
Students must be able to read and understand scientific texts and articles (also in English) concerning electronic interfaces.

PREREQUISITES

Thévenin equivalent circuit.
Norton equivalent circuit.
Laplace transform
Fourier transform

Syllabus:

Fundamentals on electronic devices.
Equivalent circuits (mechanic systems, thermal systems,…).
Diode circuits.
Transistor circuits.
Nullors.
Operational amplifiers (op amps).
Universal active devices.
Non-idealities of op-amps and other universal active devices.
Op-amp circuits.
Simulations of electronic circuits (SPICE).
Electronic interfaces.
Circuits for mechatronics (design examples).

Fundamentals of Mechanisms of Systems (block A) (since 2022-23)

Fundamentals of Mechanisms of Systems (block A) (since 2022-23)
1 YEAR
1 semester 6 CFU
Marco Ceccarelli A.Y. 2021-22

A.Y. 2022-23

Code: 803000062
SSD: ING-IND-13
(by Engineering Sciences)

OBJECTIVES

LEARNING OUTCOMES: The course aims to teach students the knowledge and tools that are needed to address the issues that are related to the identification, modeling, analysis, and design of multi-body planar systems in English language and terminology

KNOWLEDGE AND UNDERSTANDING: modeling and procedures to recognize the structure and characteristics of mechanisms and machines

APPLYING KNOWLEDGE AND UNDERSTANDING: acquisition of analysis procedures for the understanding of kinematic and dynamic characteristics of mechanisms and machines

MAKING JUDGEMENTS: possibility of judging the functionality of mechanisms and machines with their own qualitative and quantitative assessments

COMMUNICATION SKILLS: learning technical terminology and procedures for presenting the performance of mechanisms

LEARNING SKILLS: learning technical terminology and procedures for the presentation of the performance of mechanisms


PREREQUISITES: knowledge of basic mechanics of rigid bodies and computation skills

SYLLABUS

Structure and classification of planar mechanical systems, kinematic modeling, mobility analysis, graphical approaches of kinematics analysis, kinematic analysis with computer-oriented algorithms; dynamics and statics modeling, graphical approaches of dynamics analysis, dynamic analysis with computer-oriented algorithms, performance evaluation; elements of mechanical transmissions.

BOOKS:

Lopez-Cajùn C., Ceccarelli M., Mecanismos, Trillas, Città del Messico
Shigley J.E., Pennock G.R., Uicker J.J., “Theory of Machines and Mechanisms”, McGraw-Hill, New York
Handnotes and papers by the teachers

POWERTRAIN TECHNOLOGIES FOR FUTURE MOBILITY (ex Internal Combustion Engines)

POWERTRAIN TECHNOLOGIES FOR FUTURE MOBILITY (ex Internal Combustion Engines)
1 YEAR (Block C)

2 YEAR (Blocks A|B|D|E)

II semester  9 CFU
Stefano CORDINER (6/9 cfu)
Lorenzo BARTOLUCCI (3/9 cfu)
A.Y. 2021-22

Internal Combustion Engines

Since A.Y. 2022-23

POWERTRAIN TECHNOLOGIES FOR FUTURE MOBILITY

Code: 80300079
SSD: ING/IND/08
(by Mechanical Engineering)

 

LEARNING OUTCOMES:
The aim of the course is to provide students with in-depth scientific training to properly address the design, selection and management of internal combustion engines and their interaction with the environment, as well as to create the conditions for the development of innovative solutions. To this aim, students will develop in-depth knowledge of the principles of engine operation and learn simulation procedures for testing and sizing an alternative internal combustion engine and its main components. Special attention is also given to the latest technological development of internal combustion engine technology aimed at exceeding current limits in terms of emissions and efficiency and defining innovative scenarios of sustainable mobility.

KNOWLEDGE AND UNDERSTANDING:
The course aim is to provide the students with tools for the analysis of the performances and the evaluation of proper design solutions for internal combustion engines and their core components. At the end of the course, the student will be able to independently understand the functional link between design variables and the performance of internal combustion engines also in case of innovative design,

APPLYING KNOWLEDGE AND UNDERSTANDING:
The course, through the analysis of specific problems and quantitative data, is aimed at providing the tools for analysis and evaluation of the effects of different design choices. The theme of energy efficiency and pollution reduction are at the heart of the teaching organization. The student will be able to interpret and propose design solutions, even innovative ones, adapted to the specificity of the problems that are presented to him.

MAKING JUDGEMENTS:
By studying theoretical and practical aspects of engine design and critically assessing the influence of different design variables, the student will be able to improve his judgment and proposal in relation to design. and the management of internal combustion engines.

COMMUNICATION SKILLS:
The presentation of the theoretical and application profiles underlying the operation of internal combustion engines will be carried out to allow the knowledge of the technical language of the appropriate specialist terminology; The development of communication skills, both oral and written, will also be stimulated through classroom discussion, participation in seminary activities and through final tests.

LEARNING SKILLS:
The learning capacity, even individual, will be stimulated through numerical exercises, the drafting of papers on specialized topics, the discussion in the classroom, also aimed at verifying the actual understanding of the topics treated. The learning capacity will also be stimulated by integrative educational aids (journal articles and economic newspapers) in order to develop autonomous application capabilities.

SYLLABUS:

General information on internal combustion engines: Characteristics and Classification, thermodynamic and performance analysis. Experimental analysis of the performance of an internal combustion engine Air Supply for 4-stroke engines: volumetric efficiency and its evaluation, quasi-stationary effects; valve sizing; the influence of other engine parameters; Variable Valve Actuation systems; non-stationary phenomena in the intake and exhaust: inertia and wave propagation; variable valve geometry systems, computational models; 2-stroke engines: construction schemes; Supercharging; In cylinder charge motion: Turbulence; swirl, squish, tumble, stratified charge engines Traditional and alternative fuels; Fuels general properties: fuel, air stoichiometric; calorific value gaseous fuels: natural gas, hydrogen and mixtures thereof. bioethanol , bio-diesel and DME. Features and their use in engines: technical solutions, performance and emissions Fuel metering. Otto engines: carburetor; injection systems; lambda probe. Diesel engines: fuel injectors and injection systems, dimensioning. Experimental tests on a diesel injection system Common Rail Combustion: Fundamentals of analytical study of combustion, thermodynamics of combustion processes, calculation of the chemical composition and temperature in adiabatic equilibrium transport phenomena (notes), chemical kinetics (notes). Combustion in Otto and Diesel engines. Emissions and their control systems: emissions formation mechanisms, effects on health and environment, measurement of emissions; influence of engine parameters, test cycles and legislation; procedures and systems for the reduction of emissions in engines. Experimental tests. Cooling system: Heat flows, heat transfer in the engine cooling systems, liquid and air: structural layouts and sizing; thermal stress of the mechanical parts. Sustainable mobility. Principles of operation of hybrid vehicles: series and parallel solution; engines there and electrical workers, regenerative braking, lithium batteries, performance and prospects. Plug-in hybrid vehicles, engines c.i. ” Range extender “. Electric vehicles, characteristics and perspectives For all the topics of the course the numerical simulation tools will be presented