MEASUREMENT SYSTEMS FOR MECHATRONICS

MEASUREMENT SYSTEMS FOR MECHATRONICS
2 YEAR II semester  6 CFU
Arianna Mencattini A.Y. 2021-22
A.Y. 2022-23
Code: 8039787
SSD: ING/INF/07

LEARNING OUTCOMES: Learning basic concepts in digital image processing and analysis as a novel measurement system in biomedical fields. The main algorithms will be illustrated particularly devoted to the image medical fields.

KNOWLEDGE AND UNDERSTANDING: The student acquires knowledge related to the possibility to use an image analysis platform to monitor the dynamics of a given phenomenon and to extract quantitative information from digital images such as object localization and tracking in digital videos.

APPLYING KNOWLEDGE AND UNDERSTANDING: The student acquires the capability to implement the algorithms in Matlab through dedicated lessons during the course with the aim of being able to autonomously develop new codes for the solution of specific problems in different application fields.

MAKING JUDGEMENTS: :
The student must be able to integrate the basic knowledge provided with those deriving from the other courses such as probability, signal theory, and pattern recognition. some fundamentals of measurement systems as well as basic metrological definitions will be provided in support of background knowledge.

COMMUNICATION SKILLS:
The student solves a written test and develops a project in Matlab that illustrates during the oral exam. The project can be done in a group to demonstrate working group capabilities.

LEARNING SKILLS:
Students will be able to read and understand scientific papers and books in English and also to deepen some topics. In some cases, students will develop also experimental tests with time-lapse microscopy acquisition in the department laboratory.

 

SYLLABUS:

Fundamentals of metrology. Basic definitions: resolution, accuracy, precision, reproducibility and their impact over an image based measurement system . Image processing introduction. Image representation. Spatial and pixel resolution. Image restoration. Deconvolution. Deblurring. Image quality assessment. Image enhancement. Image filtering for smoothing and sharpening. Image segmentation: pixel based (otsu method), edge based, region based (region growing), model based (active contour, Hough transform), semantic segmentation. Morphological operators. Object recognition and image classification. Case study: defects detection, object tracking in biology, computer assisted diagnosis, facial expression in human computer interface.
Matlab exercises.

DIGITAL SIGNAL PROCESSING (block C-choice2)

DIGITAL SIGNAL PROCESSING (block C-choice2)
1 YEAR II semester  6 CFU
Marina RUGGIERI A.Y. 2021-22
Marina RUGGIERI

Tommaso ROSSI

A.Y. 2022-23
Code:
SSD: ING-INF/03

OBJECTIVES

LEARNING OUTCOMES: The course aims at providing to the students the theoretical and practical tools for the development of design capabilities and implementation awareness of Digital Signal Processing (DSP) systems and applications.

KNOWLEDGE AND UNDERSTANDING: Students are envisaged to understand the DSP theoretical, design and algorithm elements and to be able to apply them in design exercises.

APPLYING KNOWLEDGE AND UNDERSTANDING: Students are envisaged to apply broadly and to personalize the design techniques and algorithm approaches taught during the lessons.

MAKING JUDGEMENTS: Students are envisaged to provide a reasoned description of the design and algorithm techniques and tools, with proper integrations and links.

COMMUNICATION SKILLS: Students are envisaged to describe analytically the theoretical elements and to provide a description of the design techniques and the algorithm steps, also providing eventual examples.

LEARNING SKILLS: Students are envisaged to deal with design tools and manuals. The correlation of topics is important, particularly when design trade-offs are concerned.

BACKGROUND

A good mathematical background (in particular on complex numbers, series, functions of complex variable) is strongly recommended.

PROGRAMME

PART I – Discrete-time signals and systems; sampling process; Discrete-time Fourier transform (DTFT); Z-transform; Discrete Fourier Series (DFS).
PART II – Processing algorithms: introduction to processing; Discrete Fourier Transform (DFT); finite and long processing; DFT-based Processing; Fast Fourier Transform (FFT); processing with FFT.
PART III – Filter Design: introduction to digital filters: FIR and IIR classification; structures, design and implementation of IIR and FIR filters; analysis of finite word length effects; DSP system design and applications; VLAB and applications (Dr. Tommaso Rossi) with design examples and applications of IIR and FIR filters, Matlab-based lab and exercises (optional).

TEXTBOOKS

[1] “Digital Signal Processing Exercises and Applications”, Marina Ruggieri, Michele Luglio, Marco Pratesi. Aracne Editrice, ISBN: 88-7999-907-9.
[2] The River Publishers’ Series in Signal, Image & Speech Processing, “An Introduction to Digital Signal Processing: A Focus on Implementation”, Stanley Henry Mneney. River Publishers, ISBN: 978-87-92329-12-7.
[3] Slides (exercises are also included therein), published on the teaching website.