Adaptive Systems (block C-opt) –> Identification and Neural Networks (24-25)

Adaptive Systems (block C-opt) –> Identification and Neural Networks (24-25)
2 YEAR II semester  6 CFU
Patrizio Tomei (4cfu)
Eugenio Martinelli (2cfu)
A.Y. 2023-24
SANTOSUOSSO Giovanni Luca A.Y. 2024-25 (new name “Identification and Neural Networks”
Didatticaweb
Code: 80300088
SSD: ING-INF/04

Pre-requirement: The basics of systems theory and control are required.

LEARNING OUTCOMES: The course aims to provide the basic techniques for the design of predictors, filters, and adaptive controllers.

KNOWLEDGE AND UNDERSTANDING: Students must obtain a detailed understanding of design techniques with the help of MATLAB-SIMULINK to solve industrial problems of adaptive filtering, adaptive prediction, and adaptive control.

APPLYING KNOWLEDGE AND UNDERSTANDING: Students must be able to apply the project techniques learned in the course even in different industrial situations than those examined in the various phases of the course.

MAKING JUDGEMENTS: Students must be able to apply the appropriate design technique to the specific cases examined, choosing the most effective algorithms.

COMMUNICATION SKILLS: Students must be able to communicate using the terminology used for filtering, prediction, and adaptive control. They must also be able to provide logical and progressive exposures starting from the basics, from structural properties, from modeling to the design of algorithms, without requiring particular prerequisites. Students are believed to be able to understand the main results of a technical publication on the course topics. Guided individual projects (which include the use of Matlab-Simulink) require assiduous participation and exchange of ideas.

LEARNING SKILLS: Students must be able to identify the appropriate techniques and algorithms in real cases that arise in industrial applications. Furthermore, it is believed that students have the ability to modify the algorithms learned during the course in order to adapt them to particular situations under consideration.

Texts

Adaptive Filtering Prediction and Control, Graham C. Goodwin, Kwai Sang Sin, Dover Publications, 2009.

MEASUREMENT SYSTEMS FOR MECHATRONICS –> COMPUTER VISION (2024-25)

MEASUREMENT SYSTEMS FOR MECHATRONICS –> COMPUTER VISION (2024-25)
2 YEAR II semester  6 CFU
Arianna Mencattini A.Y. 2021-22

A.Y. 2022-23

A.Y. 2023-24

Computer Vision A.Y. 24-25

Code: 8039787
SSD: ING/INF/07

LEARNING OUTCOMES: Learning basic concepts in digital image processing and analysis as a novel measurement system in biomedical fields. The main algorithms will be illustrated particularly devoted to the image medical fields.

KNOWLEDGE AND UNDERSTANDING: The student acquires knowledge related to the possibility to use an image analysis platform to monitor the dynamics of a given phenomenon and to extract quantitative information from digital images such as object localization and tracking in digital videos.

APPLYING KNOWLEDGE AND UNDERSTANDING: The student acquires the capability to implement the algorithms in Matlab through dedicated lessons during the course with the aim of being able to autonomously develop new codes for the solution of specific problems in different application fields.

MAKING JUDGEMENTS: :
The student must be able to integrate the basic knowledge provided with those deriving from the other courses such as probability, signal theory, and pattern recognition. some fundamentals of measurement systems as well as basic metrological definitions will be provided in support of background knowledge.

COMMUNICATION SKILLS:
The student solves a written test and develops a project in Matlab that illustrates during the oral exam. The project can be done in a group to demonstrate working group capabilities.

LEARNING SKILLS:
Students will be able to read and understand scientific papers and books in English and also to deepen some topics. In some cases, students will develop also experimental tests with time-lapse microscopy acquisition in the department laboratory.

 

SYLLABUS:

Fundamentals of metrology. Basic definitions: resolution, accuracy, precision, reproducibility, and their impact over an image based measurement system. Image processing introduction. Image representation. Spatial and pixel resolution. Image restoration. Deconvolution. Deblurring. Image quality assessment. Image enhancement. Image filtering for smoothing and sharpening. Image segmentation: pixel based (otsu method), edge based, region based (region growing), model based (active contour, Hough transform), semantic segmentation. Morphological operators. Object recognition and image classification. Case study: defects detection, object tracking in biology, computer assisted diagnosis, facial expression in human computer interface.
Matlab exercises.

Fundamentals of Mechanisms of Systems (block A) (since 2022-23)

Fundamentals of Mechanisms of Systems (block A) (since 2022-23)
1 YEAR
1 semester 6 CFU
Marco Ceccarelli A.Y. 2021-22

A.Y. 2022-23

Code: 803000062
SSD: ING-IND-13
(by Engineering Sciences)

OBJECTIVES

LEARNING OUTCOMES: The course aims to teach students the knowledge and tools that are needed to address the issues that are related to the identification, modeling, analysis, and design of multi-body planar systems in English language and terminology

KNOWLEDGE AND UNDERSTANDING: modeling and procedures to recognize the structure and characteristics of mechanisms and machines

APPLYING KNOWLEDGE AND UNDERSTANDING: acquisition of analysis procedures for the understanding of kinematic and dynamic characteristics of mechanisms and machines

MAKING JUDGEMENTS: possibility of judging the functionality of mechanisms and machines with their own qualitative and quantitative assessments

COMMUNICATION SKILLS: learning technical terminology and procedures for presenting the performance of mechanisms

LEARNING SKILLS: learning technical terminology and procedures for the presentation of the performance of mechanisms


PREREQUISITES: knowledge of basic mechanics of rigid bodies and computation skills

SYLLABUS

Structure and classification of planar mechanical systems, kinematic modeling, mobility analysis, graphical approaches of kinematics analysis, kinematic analysis with computer-oriented algorithms; dynamics and statics modeling, graphical approaches of dynamics analysis, dynamic analysis with computer-oriented algorithms, performance evaluation; elements of mechanical transmissions.

BOOKS:

Lopez-Cajùn C., Ceccarelli M., Mecanismos, Trillas, Città del Messico
Shigley J.E., Pennock G.R., Uicker J.J., “Theory of Machines and Mechanisms”, McGraw-Hill, New York
Handnotes and papers by the teachers

Digital Signal Processing (block C-opt)

Digital Signal Processing (block C-opt)
1 YEAR II semester  6 CFU
ICT and Internet Engineering
Marina RUGGIERI

 

A.Y. 2023-24
Code: 8039514
SSD: ING-INF/03

OBJECTIVES

LEARNING OUTCOMES: The course aims at providing to the students the theoretical and practical tools for the development of design capabilities and implementation awareness of Digital Signal Processing (DSP) systems and applications.

KNOWLEDGE AND UNDERSTANDING: Students are envisaged to understand the DSP theoretical, design and algorithm elements and to be able to apply them in design exercises.

APPLYING KNOWLEDGE AND UNDERSTANDING: Students are envisaged to apply broadly and to personalize the design techniques and algorithm approaches taught during the lessons.

MAKING JUDGEMENTS: Students are envisaged to provide a reasoned description of the design and algorithm techniques and tools, with proper integrations and links.

COMMUNICATION SKILLS: Students are envisaged to describe analytically the theoretical elements and to provide a description of the design techniques and the algorithm steps, also providing eventual examples.

LEARNING SKILLS: Students are envisaged to deal with design tools and manuals. The correlation of topics is important, particularly when design trade-offs are concerned.

BACKGROUND

A good mathematical background (in particular on complex numbers, series, functions of complex variable) is strongly recommended.

PROGRAMME

PART I – Discrete-time signals and systems; sampling process; Discrete-time Fourier transform (DTFT); Z-transform; Discrete Fourier Series (DFS).
PART II – Processing algorithms: introduction to processing; Discrete Fourier Transform (DFT); finite and long processing; DFT-based Processing; Fast Fourier Transform (FFT); processing with FFT.
PART III – Filter Design: introduction to digital filters: FIR and IIR classification; structures, design and implementation of IIR and FIR filters; analysis of finite word length effects; DSP system design and applications; VLAB and applications (Dr. Tommaso Rossi) with design examples and applications of IIR and FIR filters, Matlab-based lab and exercises (optional).

TEXTBOOKS

[1] “Digital Signal Processing Exercises and Applications”, Marina Ruggieri, Michele Luglio, Marco Pratesi. Aracne Editrice, ISBN: 88-7999-907-9.
[2] The River Publishers’ Series in Signal, Image & Speech Processing, “An Introduction to Digital Signal Processing: A Focus on Implementation”, Stanley Henry Mneney. River Publishers, ISBN: 978-87-92329-12-7.
[3] Slides (exercises are also included therein), published on the teaching website.

Mechanics of Materials and Structures (block A)

Mechanics of Materials and Structures (block A)
1 YEAR II semester  6 CFU
Andrea Micheletti

Edoardo Artioli

A.Y. 2021-22 (9 cfu)
Andrea Micheletti A.Y. 2022-23 (6 cfu)
Code: 80300064
SSD: ICAR/08
(by Engineering Sciences)

FORMATIVE OBJECTIVES

LEARNING OUTCOMES: The goal of this course, composed of two Modules, is to provide the student with basic knowledge of the mechanics of linearly elastic structures and of the strength of materials. By completing this class successfully, the student will be able to compute simple structural elements and reasonably complex structures.

KNOWLEDGE AND UNDERSTANDING: At the end of this course, the student will be able to:
– compute constraint reactions and internal actions in rigid-body systems and beams subjected to point/distributed forces and couples
– compute centroid position and central principal second-order moments of area distributions
– understand the formal structure of the theory of linear elasticity for beams and 3D bodies
– analyze strain and stress states in 3D bodies
– compute the stress state in beams subjected to uniaxial bending, biaxial bending, eccentric axial force
– understand the behaviour of beams subjected to shear with bending and torsion
– understand how to compute displacements/rotations in isostatic beam systems, how to solve statically underdetermined systems, how to apply yield criteria, and how to design beams against buckling

APPLYING KNOWLEDGE AND UNDERSTANDING: The student will apply the knowledge and understanding skills developed during the course to the analysis of practical problems. This includes the analysis of linearly elastic structures and structural members in terms of strength and stiffness.

MAKING JUDGEMENTS: The student will have to demonstrate his awareness of the modeling assumptions useful to describe and calculate structural elements, as well as his critical judgement on the static response of elastic structures under loads, in terms of stresses, strains, and displacements.

COMMUNICATION SKILLS: The student will demonstrate, mostly during the oral test, his capacity of analyzing and computing the static response of linearly elastic structures, as well as his knowledge of the underlying theoretical models.

LEARNING SKILLS: The student will get familiar with the modeling of structures and structural elements in practical problems, mostly during the development of his skills for the written test. This mainly concerns beams and three-dimensional bodies.

PREREQUISITES: The student should have already attended the basic courses of calculus, geometry, and physics.
It is required that the student has good skills with regard to differential and integral calculus, linear algebra and matrix calculations.

SYLLABUS:

Together with the other Module of this course, the following topics are covered.

Review of basic notions of vector and tensor algebra and calculus.
Kinematics and statics of rigid-body systems.
Geometry of area distributions.
Strain and stress in 3D continuous bodies and beam-like bodies.
Virtual power and virtual work equation for beams and 3D bodies.
One-dimensional beam models: Bernoulli-Navier model, Timoshenko model, constitutive equations, governing differential equations.
Constitutive equation for linearly elastic and isotropic bodies, material moduli.
Hypothesis in linear elasticity, equilibrium problem for linearly elastic beams and 3D bodies.
Three-dimensional beam model: the Saint-Venant problem, uniaxial and biaxial bending, eccentric axial force, shear and bending, torsion.
Elastic energy of beams and 3D bodies, work-energy theorem, Betti’s reciprocal theorem, Castigliano’s theorem.
Yield criteria (maximum normal stress, maximum tangential stress, maximum elastic energy, maximum distortion energy).
Buckling instability, bifurcation diagrams, load and geometry imperfections, Euler buckling load, design against buckling.
Basic notions on the finite element method and structural analysis software.

Analogue Electronics (block B-opt)

Analogue Electronics (block B-opt)
1 YEAR II semester  6 CFU + 3 cfu extra
Rocco Giofre’ A.Y. 2021-22

A.Y. 2022-23

Paolo Colantonio A.Y. 2023-24
Code: 80300060
SSD: ING-INF/01
(by Engineering Sciences)

The students who include Analogue Electronics in their study plan are strongly advised to include it in its 9-CFU version, with the last 3 CFUs (out of 9) working as Extra Credits.


LEARNING OUTCOMES:
Learning the basic concept of analogue electronic systems and circuits and developing the competencies to design electronic circuits.
The educational objectives are pursued through lectures and exercises.

KNOWLEDGE AND UNDERSTANDING:
The student acquires the basic conceptual and analytical knowledge, both theoretical and applied, of the main basic electronic components. Subsequently, it acquires knowledge related to the integration of basic electronic components for the development of more complex electronic systems, such as amplifiers, oscillators, rectifiers, etc.

APPLYING KNOWLEDGE AND UNDERSTANDING:
The student will demonstrate to have acquired the methodologies for the analysis and synthesis (design) of simple electronic circuits.

MAKING JUDGEMENTS:
The student must be able to integrate the basic knowledge provided with those deriving from physics, mathematics, and electrical engineering courses, in order to correctly select the most appropriate analytical and circuit synthesis options.

COMMUNICATION SKILLS:
Students must be able to illustrate the basic themes of the course synthetically and analytically, linking together the different concepts that are integrated into more complex electronic systems.


Prerequisite: Knowledge of network analysis in general.

SYLLABUS:

Diode semiconductor devices and circuit applications: clipper, clamper, peak detector, etc. Bipolar Junction and Field Effect Transistors. Biasing techniques for Transistors. Amplifiers classification, analysis, and circuit design. Frequency response of single and cascaded amplifiers. Differential amplifiers and Cascode. Current mirrors. Feedback amplifiers and stability issues. Power amplifiers. Operational amplifiers and related applications. Oscillator circuits. Integrated circuits and voltage waveform generators.

Books for references
“Electronics: a systems approach”, Neil Storey, Prentice Hall
“Elettronica di Millman”, J. Millman, A. Grabel, P. Terreni, McGraw-Hill

HOW TO ATTEND LESSONS:

Although attendance is optional, given the complexity of the topics covered, it is strongly recommended to follow the lessons.

NANOTECHNOLOGY

NANOTECHNOLOGY
1 YEAR II semester  6 CFU
Antonio Agresti (3cfu)

Francesca De Rossi (3cfu)

A.Y. 2021-22
Antonio Agresti (3cfu)

Fabio Matteocci (3cfu)

A.Y. 2022-23

A.Y. 2023-24

Antonio Agresti A.Y. 2024-25
Code:
SSD: ING-INF/01

LEARNING OBJECTIVES AND EXPECTED LEARNING OUTCOMES:

LEARNING OUTCOMES:
The first part of the Nanotechnology course introduces thin film depositions using both physical and chemical vapour depositions. The main objective is the knowledge of the potential and limits of the different thin film depositions in the nanotechnology field. Particular attention is destinated to the deposition technique used in micro and nanoelectronics based on semiconductors using top-down and bottom-up approaches. The interaction of both approaches has been discussed with the student in order to share the importance of multidisciplinary knowledge (physics, chemistry and engineering) where the nanotechnology field is based. The final part of module 1 is destinated to the introduction of the case study of the course about the thin film fabrication of an emergent photovoltaic technology: the perovskite solar cells. In particular, the study of the optoelectronic properties of the materials and the fabrication of several device architectures is important to understand the important role of the manufacturing design in thin film photovoltaic technologies destinated at the industrial level.

KNOWLEDGE AND UNDERSTANDING:
Regarding the first module, at the end of the course, the student will have a clear overview of the main deposition technique studied and applied in nanotechnology for different application fields.
Regarding the second module, at the end of the course, the student will know the main characterization techniques for nanostructured materials and electronic and optoelectronic devices till nanometric size.

APPLYING KNOWLEDGE AND UNDERSTANDING:
The student will be able to recognize the applicability areas for the various characterization and realization techniques at nanometric scales. She/He will also be able to apply the knowledge and understanding developed during the course to study and understand recent literature.

MAKING JUDGEMENTS:
The transversal preparation provided by the course implies
1) the student’s capability to integrate knowledge and manage complexity
2) the student’s ability to deal with new and emerging areas in nanotechnology application to energy and nanoelectronics.

COMMUNICATION SKILLS:
The student will be able to clearly and unequivocally communicate the course content to specialized interlocutors. He will also be able to communicate the main physico-chemical characteristics of nanostructured materials and to indicate the most appropriate deposition/processing technique of these materials to technical interlocutors (example: other engineers, physicists, chemists) but not specialists in the field of electronics or devices. The student will also have a sufficient background to undertake a thesis/research work in modern nanotechnology laboratories.

LEARNING SKILLS:
The structure of the course contents, characterized by various topics apparently separated but connected by an interdisciplinary and modular vision, will contribute to developing a systemic learning capacity that will allow the student to approach in a self-directed or autonomous way to other frontier problems on nanotechnology application to energy and nanoelectronics. Furthermore, the student will be able to read and understand recent scientific literature.

 

SYLLABUS

 

First Module: 1 Prof. Antonio Agresti (3 cfu)

1) Quantum Mechanics and p-n junction

2 )Solar Cells: main electrical characterization techniques

3) Absorbance and Fluorescence Spectroscopy

4) Electron scanning microscopy (SEM)

5) Electron transmission microscopy (TEM)

6) Scanning tunneling microscopy (STM)

7) Atomic force microscopy (AFM)

8) Kelvin Probe Microscopy (KPFM)

9) Raman spectroscopy

10) Bi-Dimensional Materials

 

Second module – Prof. Fabio Matteocci (3cfu)

 

1) Introduction to nanotechnology and thin film properties;
2) Thin Film Deposition: the importance of vacuum and plasma;
3) Thermal Evaporation: Working mechanism, material properties, deposition parameters and applications;
4) DC and RF Sputtering: Working mechanism, material properties, deposition parameters and applications;
5) Pulsed Laser Deposition: Working mechanism, material properties, deposition parameters and applications;
6) Chemical Vapour Deposition: Working mechanism, material properties, deposition parameters and applications;
7) Atomic Layer Deposition: Working mechanism, material properties, deposition parameters and applications;
8) Solution Processing: Spin coating, Screen Printing, Blade Coating, Slot die coating;
9) Patterning Procedures: Photolithography and Laser Ablation;
10) Introduction to Perovskite Solar Cell: Working mechanism, material properties, deposition techniques, up-scaling process and applications;
11) Building Integration Photovoltaics;