Multimedia Processing and Communication (block C-opt)

Multimedia Processing and Communication (block C-opt)
2 YEAR I semester  6 CFU
Tommaso Rossi

Cesare Roseti

ICT and Internet Engineering
A.Y. 2023-24
Code:
SSD: ING-INF/03

FORMATIVE OBJECTIVES

The course module provides an overview of the technologies involved in the multimedia application evolution from analogue to digital, from linear television to video on demand. To this aim, the module addresses the main TV standards, the TCP/IP protocols involved in modern streaming services, the network architectures and the different service modes.

PREREQUISITES: A good background in TCP/IP protocols.

SYLLABUS:

PARTE I – Digital TV standards, MPEG-2  and  Transport Stream, IP encapsulation over  DVB.

PARTE II – IP multicast, IGMP, IP multicast routing

PARTE III –  Transport protocols for IP multimedia applications; Video streaming applications and CDN, the multimedia protocol stack, RTP and RTCP, multimedia signalling protocols: RTSP, SDP and SIP, Key Performance Indicators.

PARTE IV -Adaptive Streaming over HTTP, MPEG-DASH, Support to multimedia applications over 5G.

MEASUREMENT SYSTEMS FOR MECHATRONICS

MEASUREMENT SYSTEMS FOR MECHATRONICS
2 YEAR II semester  6 CFU
Arianna Mencattini A.Y. 2021-22

A.Y. 2022-23

A.Y. 2023-24

Computer Vision A.Y. 24-25

Code: 8039787
SSD: ING/INF/07

LEARNING OUTCOMES: Learning basic concepts in digital image processing and analysis as a novel measurement system in biomedical fields. The main algorithms will be illustrated particularly devoted to the image medical fields.

KNOWLEDGE AND UNDERSTANDING: The student acquires knowledge related to the possibility to use an image analysis platform to monitor the dynamics of a given phenomenon and to extract quantitative information from digital images such as object localization and tracking in digital videos.

APPLYING KNOWLEDGE AND UNDERSTANDING: The student acquires the capability to implement the algorithms in Matlab through dedicated lessons during the course with the aim of being able to autonomously develop new codes for the solution of specific problems in different application fields.

MAKING JUDGEMENTS: :
The student must be able to integrate the basic knowledge provided with those deriving from the other courses such as probability, signal theory, and pattern recognition. some fundamentals of measurement systems as well as basic metrological definitions will be provided in support of background knowledge.

COMMUNICATION SKILLS:
The student solves a written test and develops a project in Matlab that illustrates during the oral exam. The project can be done in a group to demonstrate working group capabilities.

LEARNING SKILLS:
Students will be able to read and understand scientific papers and books in English and also to deepen some topics. In some cases, students will develop also experimental tests with time-lapse microscopy acquisition in the department laboratory.

 

SYLLABUS:

Fundamentals of metrology. Basic definitions: resolution, accuracy, precision, reproducibility, and their impact over an image based measurement system. Image processing introduction. Image representation. Spatial and pixel resolution. Image restoration. Deconvolution. Deblurring. Image quality assessment. Image enhancement. Image filtering for smoothing and sharpening. Image segmentation: pixel based (otsu method), edge based, region based (region growing), model based (active contour, Hough transform), semantic segmentation. Morphological operators. Object recognition and image classification. Case study: defects detection, object tracking in biology, computer assisted diagnosis, facial expression in human computer interface.
Matlab exercises.

ELECTRONICS OF IOT AND EMBEDDED SYSTEMS

ELECTRONICS OF IOT AND EMBEDDED SYSTEMS
2 YEAR 1 semester 12 CFU
Patrick LONGHI (3cfu)

Giancarlo ORENGO (3cfu)

Gian Carlo CARDARILLI (4cfu)

Luca DI NUNZIO (2cfu)

A.Y. 2021-22

A.Y. 2022-23

MODULI:

M-5519 – ELECTRONICS OF IOT (6cfu)

M-5520 – DESIGN OF EMBEDDED SYSTEMS FOR (6cfu)MECHATRONICS

Code: 8039795
SSD: ING-INF/01

EDUCATIONAL OBJECTIVES:
The objectives of the course are:
1) to provide the tools to carry out a radio link assessment in a real application context.
2) learn the fundamental parameters of the antennas used in IoT applications
3) provide the tools to interpret the electrical diagram of the RF front end of a typical trans receiver.

KNOWLEDGE AND UNDERSTANDING:
Provide the fundamental tools to understand the most advanced and updated content from publications, magazines, forums, blogs, etc., to always be updated on the state of the art.

ABILITY TO APPLY KNOWLEDGE AND UNDERSTANDING:
practical radio link budget, electronic noise evaluation on receiver behaviour, installation effects of the antennas, understanding of key parameters of commonly used antennas in the targeted scenario, analysis of an RF transceiver block diagram

AUTONOMY OF JUDGMENT:
In the enormous amount of information that is available today to developers of IoT applications, the course seeks to develop in the student the ability to select the highest quality and most validated content.

COMMUNICATION SKILLS:
The final test is based on an oral exam in which the student illustrates a part of the module

LEARNING ABILITY:
The course aims to develop in the student the ability to independently learn new and constantly updated content because the knowledge acquired today soon becomes obsolete.

SYLLABUS:

(Longhi):

Introduction to radiating elements and their key parameters.
Ideal and practical link budget.
The effect of noise in electronic receivers, figures of merit and mathematical modelling. Receiver G/T.
Practical aspects of IoT RF systems
RFID
Radiating elements key parameters, gain, directivity, HPBW, nulls, radiation pattern, polarization, and input impedance. Some practical cases: the mono/di-pole family, microstrip antennas, parabolic reflector, wearables
Introduction to RF transceiver systems and key-components (switches, HPA, LNA, mixers, frequency generators).

(G.Orengo):

Summary of Digital Electronics: digital encoding of information, binary (fixed and floating point), hexadecimal and ASCII; operators and main logic circuits, registers and memories, programmable devices. Prototyping boards for IoT (Arduino, Rasberry), Systems on Chip (SoC), architecture of a microcontroller, description of the Arduino Uno board. Programming languages ​​(assembly, compiled, interpreted), structure of an Arduino sketch (libraries, setups, loops, functions, interrupts), programming elements in C (variables, math and logical operations, cycles, conditional statements). Use of digital and analog I/O ports (A/D conversion, PWM output). Synchronous and asynchronous serial communication modes, wired (USB) and wireless with Bluetooth, RF and WiFi modules. Remote control of electronic modules (sensors, dc stepper and servo motors, LED/LCD displays etc.) from portable devices (Windows, IoS), through applications developed in Processing and Python, and mobile (Android), through Apps developed with the MIT App Inventor platform. Internet protocols for device local/remote control through WiFi modules connected as access points/clients to web platforms or public/private cloud servers controlled by laptops and/or mobile devices.

(G.Cardarilli):

– Introduction to the Internet of Things (IoT) and embedded systems
– Wireless and mobile communications
– The Sensors
– Low power processing
– IoT and machine learning applications
– Future developments in the field of IoT and embedded systems

 

CONTROL OF MECHANICAL SYSTEMS

CONTROL OF MECHANICAL SYSTEMS
2 YEAR
1 semester 9 CFU
Riccardo MARINO A.Y. 2021-22

A.Y. 2022-23

Code: 8039823
SSD: ING-INF/04

LEARNING OUTCOMES:

Ability to understand scientific papers on the control of mechanical systems

KNOWLEDGE AND UNDERSTANDING:

Knowledge of dynamic modeling of mechanical systems. Knowledge of basic feedback control techniques for single input single output systems and of decoupling techniques for multi input multi output nonlinear systems

APPLYING KNOWLEDGE AND UNDERSTANDING:

Ability to simulate using Matlab Simulink complex controlled mechanical systems

MAKING JUDGEMENTS:

Ability to evaluate stability, robustness, and performance of a control system

COMMUNICATION SKILLS: Ability to present and discuss an autonomous design project

LEARNING SKILLS: Ability to fully understand a scientific paper on the control of mechanical systems

SYLLABUS:

BASIC CONTROL TOOLS
Bounded- input bounded- output linear systems. Pole placement theorem for controllable and observable linear systems. Luenberger observers for observable systems. Design of dynamic compensators for linear systems. Integral feedback control to reject constant disturbances. PID control. System inverses for minimum phase linear systems. The combination of feedback and feedforward control actions.
ADVANCED CONTROL TOOLS
Linear approximations of nonlinear control systems about operating conditions. The definition of region of attraction for an operating condition. Output feedback compensators with integral actions to control nonlinear systems about a given operating condition. Liapunov matrix equations to determine quadratic Liapunov functions and assess the region of attraction. The definition of the sensitivity transfer function and its properties. The gang of four: sensitivity, complementary sensitivity, load sensitivity and noise sensitivity functions. How to determine the robustness of a control loop using the gang of four functions. Bode’s integral formula and the limitations imposed by unstable open loop poles. Youla parametrization to design stable compensation. Kalman filters, Riccati equations and robust control design.

CONTROL DESIGN FOR MULTIVARIABLE NONLINEAR SYSTEMS
Relative degree for a single input single output nonlinear system. State feedback control design for input-output linearization. State feedback linearization when the relative degree is equal to the state space dimension. The definition of nonlinear inverse systems. Relative degrees or decoupling indices for multivariable (multi-input, multi-output) nonlinear systems. The definition of the decoupling matrix. State feedback control design for input-output linearization when the decoupling matrix is full rank using the Penrose pseudoinverse. State feedback linearization when the sum of relative degrees is equal to the state space dimension and the decoupling matrix is full rank.

CASE STUDIES OF NONLINEAR MECHANICAL CONTROL SYSTEMS
Control of bycicles, robots, vehicles and aircrafts

POWERTRAIN TECHNOLOGIES FOR FUTURE MOBILITY (ex Internal Combustion Engines)

POWERTRAIN TECHNOLOGIES FOR FUTURE MOBILITY (ex Internal Combustion Engines)
1 YEAR (Block C)

2 YEAR (Blocks A|B)

II semester  9 CFU
Stefano CORDINER (6/9 cfu)
Lorenzo BARTOLUCCI (3/9 cfu)
A.Y. 2021-22

Internal Combustion Engines

A.Y. 2022-23

POWERTRAIN TECHNOLOGIES FOR FUTURE MOBILITY

Code: 80300079
SSD: ING/IND/08
(by Mechanical Engineering)

 

LEARNING OUTCOMES:
The aim of the course is to provide students with in-depth scientific training to properly address the design, selection and management of internal combustion engines and their interaction with the environment, as well as to create the conditions for the development of innovative solutions. To this aim, students will develop in-depth knowledge of the principles of engine operation and learn simulation procedures for testing and sizing an alternative internal combustion engine and its main components. Special attention is also given to the latest technological development of internal combustion engine technology aimed at exceeding current limits in terms of emissions and efficiency and defining innovative scenarios of sustainable mobility.

KNOWLEDGE AND UNDERSTANDING:
The course aim is to provide the students with tools for the analysis of the performances and the evaluation of proper design solutions for internal combustion engines and their core components. At the end of the course, the student will be able to independently understand the functional link between design variables and the performance of internal combustion engines also in case of innovative design,

APPLYING KNOWLEDGE AND UNDERSTANDING:
The course, through the analysis of specific problems and quantitative data, is aimed at providing the tools for analysis and evaluation of the effects of different design choices. The theme of energy efficiency and pollution reduction are at the heart of the teaching organization. The student will be able to interpret and propose design solutions, even innovative ones, adapted to the specificity of the problems that are presented to him.

MAKING JUDGEMENTS:
By studying theoretical and practical aspects of engine design and critically assessing the influence of different design variables, the student will be able to improve his judgment and proposal in relation to design. and the management of internal combustion engines.

COMMUNICATION SKILLS:
The presentation of the theoretical and application profiles underlying the operation of internal combustion engines will be carried out to allow the knowledge of the technical language of the appropriate specialist terminology; The development of communication skills, both oral and written, will also be stimulated through classroom discussion, participation in seminary activities and through final tests.

LEARNING SKILLS:
The learning capacity, even individual, will be stimulated through numerical exercises, the drafting of papers on specialized topics, the discussion in the classroom, also aimed at verifying the actual understanding of the topics treated. The learning capacity will also be stimulated by integrative educational aids (journal articles and economic newspapers) in order to develop autonomous application capabilities.

SYLLABUS:

General information on internal combustion engines: Characteristics and Classification, thermodynamic and performance analysis. Experimental analysis of the performance of an internal combustion engine Air Supply for 4-stroke engines: volumetric efficiency and its evaluation, quasi-stationary effects; valve sizing; the influence of other engine parameters; Variable Valve Actuation systems; non-stationary phenomena in the intake and exhaust: inertia and wave propagation; variable valve geometry systems, computational models; 2-stroke engines: construction schemes; Supercharging; In cylinder charge motion: Turbulence; swirl, squish, tumble, stratified charge engines Traditional and alternative fuels; Fuels general properties: fuel, air stoichiometric; calorific value gaseous fuels: natural gas, hydrogen and mixtures thereof. bioethanol , bio-diesel and DME. Features and their use in engines: technical solutions, performance and emissions Fuel metering. Otto engines: carburetor; injection systems; lambda probe. Diesel engines: fuel injectors and injection systems, dimensioning. Experimental tests on a diesel injection system Common Rail Combustion: Fundamentals of analytical study of combustion, thermodynamics of combustion processes, calculation of the chemical composition and temperature in adiabatic equilibrium transport phenomena (notes), chemical kinetics (notes). Combustion in Otto and Diesel engines. Emissions and their control systems: emissions formation mechanisms, effects on health and environment, measurement of emissions; influence of engine parameters, test cycles and legislation; procedures and systems for the reduction of emissions in engines. Experimental tests. Cooling system: Heat flows, heat transfer in the engine cooling systems, liquid and air: structural layouts and sizing; thermal stress of the mechanical parts. Sustainable mobility. Principles of operation of hybrid vehicles: series and parallel solution; engines there and electrical workers, regenerative braking, lithium batteries, performance and prospects. Plug-in hybrid vehicles, engines c.i. ” Range extender “. Electric vehicles, characteristics and perspectives For all the topics of the course the numerical simulation tools will be presented