Mechanics of Materials and Structures (block A-E)

Mechanics of Materials and Structures (block A-E)
1 YEAR II semester  6 CFU
Andrea Micheletti

Edoardo Artioli

A.Y. 2021-22 (9 cfu)
Andrea Micheletti A.Y. 2022-23
A.Y. 2024-25 (6 cfu)
Code: 80300064
SSD: ICAR/08
(by Engineering Sciences)

FORMATIVE OBJECTIVES

LEARNING OUTCOMES: The goal of this course, composed of two Modules, is to provide the student with basic knowledge of the mechanics of linearly elastic structures and of the strength of materials. By completing this class successfully, the student will be able to compute simple structural elements and reasonably complex structures.

KNOWLEDGE AND UNDERSTANDING: At the end of this course, the student will be able to:
– compute constraint reactions and internal actions in rigid-body systems and beams subjected to point/distributed forces and couples
– compute centroid position and central principal second-order moments of area distributions
– understand the formal structure of the theory of linear elasticity for beams and 3D bodies
– analyze strain and stress states in 3D bodies
– compute the stress state in beams subjected to uniaxial bending, biaxial bending, eccentric axial force
– understand the behaviour of beams subjected to shear with bending and torsion
– understand how to compute displacements/rotations in isostatic beam systems, how to solve statically underdetermined systems, how to apply yield criteria, and how to design beams against buckling

APPLYING KNOWLEDGE AND UNDERSTANDING: The student will apply the knowledge and understanding skills developed during the course to the analysis of practical problems. This includes the analysis of linearly elastic structures and structural members in terms of strength and stiffness.

MAKING JUDGEMENTS: The student will have to demonstrate his awareness of the modeling assumptions useful to describe and calculate structural elements, as well as his critical judgement on the static response of elastic structures under loads, in terms of stresses, strains, and displacements.

COMMUNICATION SKILLS: The student will demonstrate, mostly during the oral test, his capacity of analyzing and computing the static response of linearly elastic structures, as well as his knowledge of the underlying theoretical models.

LEARNING SKILLS: The student will get familiar with the modeling of structures and structural elements in practical problems, mostly during the development of his skills for the written test. This mainly concerns beams and three-dimensional bodies.

PREREQUISITES: The student should have already attended the basic courses of calculus, geometry, and physics.
It is required that the student has good skills with regard to differential and integral calculus, linear algebra and matrix calculations.

SYLLABUS:

Together with the other Module of this course, the following topics are covered.

Review of basic notions of vector and tensor algebra and calculus.
Kinematics and statics of rigid-body systems.
Geometry of area distributions.
Strain and stress in 3D continuous bodies and beam-like bodies.
Virtual power and virtual work equation for beams and 3D bodies.
One-dimensional beam models: Bernoulli-Navier model, Timoshenko model, constitutive equations, governing differential equations.
Constitutive equation for linearly elastic and isotropic bodies, material moduli.
Hypothesis in linear elasticity, equilibrium problem for linearly elastic beams and 3D bodies.
Three-dimensional beam model: the Saint-Venant problem, uniaxial and biaxial bending, eccentric axial force, shear and bending, torsion.
Elastic energy of beams and 3D bodies, work-energy theorem, Betti’s reciprocal theorem, Castigliano’s theorem.
Yield criteria (maximum normal stress, maximum tangential stress, maximum elastic energy, maximum distortion energy).
Buckling instability, bifurcation diagrams, load and geometry imperfections, Euler buckling load, design against buckling.
Basic notions on the finite element method and structural analysis software.

Analogue Electronics (block B-opt)

Analogue Electronics (block B-opt)
1 YEAR II semester  6 CFU + 3 cfu extra
Rocco Giofre’ A.Y. 2021-22

A.Y. 2022-23

Paolo Colantonio A.Y. 2023-24
Code: 8037954 (9CFU)
80300060 (6CFU)

SSD: ING-INF/01
(by Engineering Sciences)

The students who include Analogue Electronics in their study plan are strongly advised to include it in its 9-CFU version, with the last 3 CFUs (out of 9) working as Extra Credits.


LEARNING OUTCOMES:
Learning the basic concept of analogue electronic systems and circuits and developing the competencies to design electronic circuits.
The educational objectives are pursued through lectures and exercises.

KNOWLEDGE AND UNDERSTANDING:
The student acquires the basic conceptual and analytical knowledge, both theoretical and applied, of the main basic electronic components. Subsequently, it acquires knowledge related to the integration of basic electronic components for the development of more complex electronic systems, such as amplifiers, oscillators, rectifiers, etc.

APPLYING KNOWLEDGE AND UNDERSTANDING:
The student will demonstrate to have acquired the methodologies for the analysis and synthesis (design) of simple electronic circuits.

MAKING JUDGEMENTS:
The student must be able to integrate the basic knowledge provided with those deriving from physics, mathematics, and electrical engineering courses, in order to correctly select the most appropriate analytical and circuit synthesis options.

COMMUNICATION SKILLS:
Students must be able to illustrate the basic themes of the course synthetically and analytically, linking together the different concepts that are integrated into more complex electronic systems.


Prerequisite: Knowledge of network analysis in general.

SYLLABUS:

Diode semiconductor devices and circuit applications: clipper, clamper, peak detector, etc. Bipolar Junction and Field Effect Transistors. Biasing techniques for Transistors. Amplifiers classification, analysis, and circuit design. Frequency response of single and cascaded amplifiers. Differential amplifiers and Cascode. Current mirrors. Feedback amplifiers and stability issues. Power amplifiers. Operational amplifiers and related applications. Oscillator circuits. Integrated circuits and voltage waveform generators.

Books for references
“Electronics: a systems approach”, Neil Storey, Prentice Hall
“Elettronica di Millman”, J. Millman, A. Grabel, P. Terreni, McGraw-Hill

HOW TO ATTEND LESSONS:

Although attendance is optional, given the complexity of the topics covered, it is strongly recommended to follow the lessons.

NANOTECHNOLOGY

NANOTECHNOLOGY
1 YEAR II semester  6 CFU
Antonio Agresti (3cfu)
Francesca De Rossi (3cfu)
A.Y. 2021-22
Antonio Agresti (3cfu)
Fabio Matteocci (3cfu)
A.Y. 2022-23
A.Y. 2023-24
Antonio Agresti (6cfu) A.Y. 2024-25
Code: 8039791
SSD: ING-INF/01

 

LEARNING OBJECTIVES AND EXPECTED LEARNING OUTCOMES:

LEARNING OUTCOMES:
The first part of the Nanotechnology course introduces thin film depositions using both physical and chemical vapour depositions. The main objective is the knowledge of the potential and limits of the different thin film depositions in the nanotechnology field. Particular attention is destinated to the deposition technique used in micro and nanoelectronics based on semiconductors using top-down and bottom-up approaches. The interaction of both approaches has been discussed with the student in order to share the importance of multidisciplinary knowledge (physics, chemistry and engineering) where the nanotechnology field is based. The final part of module 1 is destinated to the introduction of the case study of the course about the thin film fabrication of an emergent photovoltaic technology: the perovskite solar cells. In particular, the study of the optoelectronic properties of the materials and the fabrication of several device architectures is important to understand the important role of the manufacturing design in thin film photovoltaic technologies destinated at the industrial level.

KNOWLEDGE AND UNDERSTANDING:
Regarding the first module, at the end of the course, the student will have a clear overview of the main deposition technique studied and applied in nanotechnology for different application fields.
Regarding the second module, at the end of the course, the student will know the main characterization techniques for nanostructured materials and electronic and optoelectronic devices till nanometric size.

APPLYING KNOWLEDGE AND UNDERSTANDING:
The student will be able to recognize the applicability areas for the various characterization and realization techniques at nanometric scales. She/He will also be able to apply the knowledge and understanding developed during the course to study and understand recent literature.

MAKING JUDGEMENTS:
The transversal preparation provided by the course implies
1) the student’s capability to integrate knowledge and manage complexity
2) the student’s ability to deal with new and emerging areas in nanotechnology application to energy and nanoelectronics.

COMMUNICATION SKILLS:
The student will be able to clearly and unequivocally communicate the course content to specialized interlocutors. He will also be able to communicate the main physico-chemical characteristics of nanostructured materials and to indicate the most appropriate deposition/processing technique of these materials to technical interlocutors (example: other engineers, physicists, chemists) but not specialists in the field of electronics or devices. The student will also have a sufficient background to undertake a thesis/research work in modern nanotechnology laboratories.

LEARNING SKILLS:
The structure of the course contents, characterized by various topics apparently separated but connected by an interdisciplinary and modular vision, will contribute to developing a systemic learning capacity that will allow the student to approach in a self-directed or autonomous way to other frontier problems on nanotechnology application to energy and nanoelectronics. Furthermore, the student will be able to read and understand recent scientific literature.

 

SYLLABUS

 

I part: Physics and Engineering of cutting-edge nanotechnologies (tot. 3 CFU)

1) Quantum Mechanics and physiscs of semiconductors.
2) Quantum structures and nanodevices: quantum wires, quantum dots, quantum well.
3) p-n junction and diodes.
4) Devices based on quantum mechanics: Working principles and design guidelines for photodiodes, solar cells, light emitting diode (LED), laser.
5) New frontiers of the nanotechnology applications: innovative nanomaterials (2D materials) and organic electronics.

II part) Characterization techniques for nanomaterials and nanodevices (tot. 2 CFU)

1) Absorbance and Fluorescence Spectroscopy
2) Transient Absorption Spectroscopy
3) Raman Spectroscopy
4) Electron Scanning Microscopy (SEM)
5) Tansmission Electron Microscopy (TEM)
6) Scanning Tunneling Microscopy (STM)
7) Atomic Force Microscopy (AFM)
8) Kelvin Probe Microscopy (KPFM)

III part: Lab Experiences on characterization and engineering of nanomaterials and nanodevices (tot. 1 CFU)

 

Feedback Control Systems (block B)

Feedback Control Systems (block B)
1 YEAR II semester  6 CFU
Cristiano M. VERRELLI since 2017-18 (Engineering Sciences)
since 2022-23 (Mechatronics Engineering)
Code: 8039367
SSD: ING-INF/04
DidatticaWeb

FORMATIVE OBJECTIVES

LEARNING OUTCOMES:

The theory of differential equations is successfully used to gain profound insight into the fundamental mathematical control design techniques for linear and nonlinear dynamical systems.

KNOWLEDGE AND UNDERSTANDING:

Students should be able to deeply understand (and be able to use) the theory of differential equations and of systems theory, along with related mathematical control techniques.

APPLYING KNOWLEDGE AND UNDERSTANDING:

Students should be able to design feedback controllers for linear (and even nonlinear) dynamical systems.

MAKING JUDGEMENTS:

Students should be able to identify the specific design scenario and to apply the most suitable techniques. Students should be able to compare the effectiveness of different controls while analyzing theoretical/experimental advantages and drawbacks.

COMMUNICATION SKILLS: Students are expected to be able to read and capture the main results of a technical paper concerning the topics of the course, as well as to effectively communicate in a precise and clear way the content of the course. Tutor-guided individual projects (including Maple and Matlab-Simulink computer simulations as well as visits to labs) invite intensive participation and ideas exchange.

LEARNING SKILLS:

Being enough skilled in the specific field to undertake the following studies characterized by a high degree of autonomy.

SYLLABUS:

The matrix exponential; the variation of constants formula.

Computation of the matrix exponential via eigenvalues and eigenvectors and via residual matrices. Necessary and sufficient conditions for exponential stability: Routh-Hurwitz criterion. Invariant subspaces.

Impulse responses, step responses and steady state responses to sinusoidal inputs. Transient behaviours. Modal analysis: mode excitation by initial conditions and by impulsive inputs; modal observability from output measurements; modes which are both excitable and observable. Popov conditions for modal excitability and observability. Autoregressive moving average (ARMA) models and transfer functions.

Kalman reachability conditions, gramian reachability matrices and the computation of input signals to drive the system between two given states. Kalman observability conditions, gramian observability matrices and the computation of initial conditions given input and output signals. Equivalence between Kalman and Popov conditions.

Kalman decomposition for non-reachable and non-observable systems.

Eigenvalues assignment by state feedback for reachable systems. Design of asymptotic observers and Kalman filters for state estimation of observable systems. Design of dynamic compensators to stabilize any reachable and observable system. Design of regulators to reject disturbances generated by linear exosystems.

Bode plots. Static gain, system gain and high-frequency gain.

Zero-pole cancellation.

STATISTICS:

A.Y.  Mechatronics students Other courses Students Mechatronics average Other courses average
2019/2020 10 62 24 23
2020/2021 19 25 23 24
2021/2022 13 44 21 22

Innovative Materials with Laboratory (blocks B-C-C1-E)

Innovative Materials with Laboratory (blocks B-C-C1-E)
1 YEAR 1 semester 6 CFU
TATA MARIA ELISA (1cfu)
COSTANZA GIROLAMO (1cfu)
VARONE ALESSANDRA (4cfu)
A.Y. 2021-22
A.Y. 2022-23
A.Y. 2023-24 (MS TEAMS)
A.Y. 2024-25 (C1-E)
Code: 8039786
SSD: ING-IND/21

LEARNING OUTCOMES:
The aim of the course is to provide an overview of novel materials recently developed and investigated for applications in mechanics, electronics, and mechatronics. Different types of materials are considered and described with particular attention on the preparation route, specific characteristics, and applications. Some of them are of basic importance for new technologies gaining increasing attention in industrial practice. The knowledge of innovative materials is strictly connected to the possibility and capability of designing new products.

KNOWLEDGE AND UNDERSTANDING:
Deep knowledge of the metallic structure and their mechanical behavior; in particular knowledge of innovative materials for mechatronics applications; selection of conventional material or not as a function of application, structure and properties.

APPLYING KNOWLEDGE AND UNDERSTANDING:
Ability to define materials properties and the most suitable production technologies for the components realization; Ability to perform tests in laboratory; Ability to define appropriate treatments in order to obtain the suitable mechanical properties as a function of service conditions. Ability to select innovative materials; ability to evaluate innovative materials properties.

MAKING JUDGEMENTS:
Ability to investigate, select and choose metallic materials as a function of the application.

COMMUNICATION SKILLS:
Clear and correct expression, in English language, skills on the topics covered in the course.

LEARNING SKILLS:

Ability to face a new problem, know how to manage it and find functional and correct solutions. learning ability will be evaluated by exam tests and laboratory activities.

SYLLABUS:

Metallurgy Fundamentals: crystal structure, defects, plastic deformation. Mechanical tests.

Amorphous alloys: production and applications of metallic glasses as mechatronic devices. Alloys with mixed structure (nanocrystalline and amorphous).

Ultrafine grained (UFG) materials: microstructural features and production routes.

Nanoporous and mesoporous materials: structural characterization and properties. Their applications for energy and gas storage.

Powder metallurgy, Additive Manufacturing Technologies.

Advanced composite materials: properties, applications and production routes.

Porous materials: metal foams, Open and closed porosity (micro and macro). Classification according to size and shape of the pores. Properties (sound, energy and vibration absorption, crash

behavior) and production methods. Functional and structural

applications: lightweight construction, automotive. Metal sandwich structures.

Functional and Smart Materials. Property change as a response of external stimulus: shape memory alloy (one-way and two-way shape memory), thermochromic, photomechanical. Energy conversion: piezoelectric, thermoelectric. Phase change materials. 

Applications: mechatronic, energy. Functionally graded materials.