Deep Learnig and applications (block C-opt)

1 YEAR II semester  6 CFU

Eugenio Martinelli
A.Y. 2024-25
Didatticaweb
Code:
SSD: ING-INF/01

Description: The course, starting from the principles of deep learning, will bring the students to study, analyze, and use all the main DL algorithms in different application scenarios. During the course, theory lessons will also be coupled with practical sessions where the algorithm will be applied to real data.

Bus serivce Tor Vergata (private)

 

https://web.uniroma2.it/it/percorso/utilitr_e_servizi/sezione/servizio_bus_navetta

 

 

 

Navetta A: from Monday to Friday, connections with the Tor Vergata railway station (via Fermi – Municipality of Frascati) and the Macroarea of Sciences MFN, passing through the various Macroareas/ Faculty;

Navetta B: from Monday to Friday (first run at 7.30 AM and last run at 05:40 PM), connects the Metro Station A Anagnina with Campus X/ CLA, passing through the university and stopping at the Metro C Torre Angela.

Electronic Interfaces (block B-opt) (since 2022-23)

Electronic Interfaces (block B-opt) (since 2022-23)
1 YEAR II semester  6 CFU
Christian Falconi A.Y. 2022-23 (new)
Code: 80300103
SSD: ING-INF/01

FORMATIVE OBJECTIVES

LEARNING OUTCOMES:
The goal is to teach the fundamental principles and tools for designing electronic interfaces.
The contents of the course have general validity, but the focus will be on electronic interfaces for mechatronics.
The course is oriented toward design.

KNOWLEDGE AND UNDERSTANDING:
Students will need to know and understand the fundamental principles and tools for the analysis and design of electronic interfaces.

APPLYING KNOWLEDGE AND UNDERSTANDING:
Students will have to demonstrate that they are able to design electronic interfaces.

MAKING JUDGEMENTS:
Students will be able to evaluate the design of electronic interfaces.

COMMUNICATION SKILLS:
The students, in addition to illustrating the fundamental principles and tools for the design of electronic interfaces, must be able to explain each design choice.

LEARNING SKILLS:
Students must be able to read and understand scientific texts and articles (also in English) concerning electronic interfaces.

PREREQUISITES

Thévenin equivalent circuit.
Norton equivalent circuit.
Laplace transform
Fourier transform

Syllabus:

Fundamentals on electronic devices.
Equivalent circuits (mechanic systems, thermal systems,…).
Diode circuits.
Transistor circuits.
Nullors.
Operational amplifiers (op amps).
Universal active devices.
Non-idealities of op-amps and other universal active devices.
Op-amp circuits.
Simulations of electronic circuits (SPICE).
Electronic interfaces.
Circuits for mechatronics (design examples).

Call for international mobility for study or research – OVERSEAS deadline 27/01/2023

Call for international mobility for study or research – OVERSEAS deadline 27/01/2023

The University of Rome “Tor Vergata” offers the possibility to its students, regularly enrolled within the standard duration of the course of study increased by a year, to spend part of their course of study at a non-European university with which they have signed a collaboration agreement for a period of study lasting one semester, to follow the courses and take the exams.

Read more

Awarding of n. 2 grants for tutoring and teaching-integrative activities

SELEZIONE PER il conferimento di n. 2 assegni per attività di tutorato e didattico-integrative propedeutiche e di recupero DA DESTINARE A studenti del Corso di Laurea Magistrale in Mechatronics Engineering e del Corso di Dottorato in Ingegneria Elettronica dell’Università degli Studi Roma “Tor Vergata”

Bando_tutorato_Mechatronics 2022

DEADLINE: 03/10/2022

Multimedia Processing and Communication (block C-opt)

Multimedia Processing and Communication (block C-opt)
2 YEAR I semester  6 CFU
Tommaso Rossi

Cesare Roseti

ICT and Internet Engineering
A.Y. 2023-24
Code:
SSD: ING-INF/03

FORMATIVE OBJECTIVES

The course module provides an overview of the technologies involved in the multimedia application evolution from analogue to digital, from linear television to video on demand. To this aim, the module addresses the main TV standards, the TCP/IP protocols involved in modern streaming services, the network architectures and the different service modes.

PREREQUISITES: A good background in TCP/IP protocols.

SYLLABUS:

PARTE I – Digital TV standards, MPEG-2  and  Transport Stream, IP encapsulation over  DVB.

PARTE II – IP multicast, IGMP, IP multicast routing

PARTE III –  Transport protocols for IP multimedia applications; Video streaming applications and CDN, the multimedia protocol stack, RTP and RTCP, multimedia signalling protocols: RTSP, SDP and SIP, Key Performance Indicators.

PARTE IV -Adaptive Streaming over HTTP, MPEG-DASH, Support to multimedia applications over 5G.