On Board Energy Generation and Storage (C2 opt)

On Board Energy Generation and Storage (C2 opt)
1 YEAR (Block C2)
1 semester 6 CFU
Prof. Fabio Matteocci
A.Y. 2024-25 (new)
Code: 80300150
SSD: ING-INF/01

 

The course requires a basic knowledge of nanotechnologies applied to the generation and storage of electric power, as well as a basic understanding of the functioning of solar cells and batteries.

FORMATIVE OBJECTIVES

LEARNING OUTCOMES:

The main objectives of the course are the study of electric power generation and storage systems that can be implemented on vehicles. The lessons, therefore, focus on next-generation photovoltaics, thin-film deposition techniques, storage systems, supercapacitors, and thermoelectricity. The generation and storage technologies will then be studied from an application perspective through case studies.

KNOWLEDGE AND UNDERSTANDING:

Students will be able to:

a) To learn the working principles for energy generation and storage (EGS);
b) To understand and explain the solutions for EGS when applied in vehicles;
c) To solve simple problems concerning the use of design of integrated EGS systems;
d) To know how to design, develop and release a simple EGS system for vehicle integration.

APPLYING KNOWLEDGE AND UNDERSTANDING:

The student will be able to recognize the applicability areas for the various EGS systems. She/He will also be able to apply the knowledge and understanding developed during the course to study and understand recent literature.

MAKING JUDGEMENTS:

Students should be capable of identifying specific design scenarios and applying the most appropriate techniques for EGS. Additionally, they should be able to compare the effectiveness of various EGS systems while evaluating their advantages and disadvantages.

COMMUNICATION SKILLS:

The student will be able to clearly and unequivocally communicate the course content to specialized interlocutors. He will also be able to communicate the main approches to the development of EGS systems. The student will also have a sufficient background to undertake a thesis/research work in EGS applications.

LEARNING SKILLS:

Being sufficiently skilled in the specific field to undertake subsequent studies characterized by a high degree of autonomy.

SYLLABUS

1. Introduction on Nanotechnology: Top Down and Bottom Up Approaches2. Physical, Chemical Deposition, Solution Processing (Working Principle and Applications) 3. Energy Generation: Conventional and Emergent Photovoltaics (Working Principle and Applications).
4. Case of Study: Perovskite solar Cells (Working Principle, Deposition Techniques and applications)
5. Storage: Conventional and Emergent technologies for Batteries
6. Electrical and Chemical Properties of Batteries (Working Principle)
7. System Integration of Energy Generation and Storage solutions
8. Opportunities and Limitations of vehicle-integrated solutions for Generation and Storage 9. Beyond Batteries: Supercapacitors and thermoelectricity

The lecture will be held in the classroom with the projection of slides that will be released to the students at the end of the lecture.

The student will only be admitted to the final exam if they have attended 80% of the course hours.

 

 

Multimedia Processing and Communication (block C-opt)

Multimedia Processing and Communication (block C-opt)
2 YEAR I semester  6 CFU
Tommaso Rossi

Cesare Roseti

ICT and Internet Engineering
A.Y. 2023-24
Code:
SSD: ING-INF/03

FORMATIVE OBJECTIVES

The course module provides an overview of the technologies involved in the multimedia application evolution from analogue to digital, from linear television to video on demand. To this aim, the module addresses the main TV standards, the TCP/IP protocols involved in modern streaming services, the network architectures and the different service modes.

PREREQUISITES: A good background in TCP/IP protocols.

SYLLABUS:

PARTE I – Digital TV standards, MPEG-2  and  Transport Stream, IP encapsulation over  DVB.

PARTE II – IP multicast, IGMP, IP multicast routing

PARTE III –  Transport protocols for IP multimedia applications; Video streaming applications and CDN, the multimedia protocol stack, RTP and RTCP, multimedia signalling protocols: RTSP, SDP and SIP, Key Performance Indicators.

PARTE IV -Adaptive Streaming over HTTP, MPEG-DASH, Support to multimedia applications over 5G.