Radar and Localization – 6 CFU (optC2.a)

Radar and Localization – 6 CFU (optC2.a)
2 YEAR II semester 6 CFU
Prof. Mauro Leonardi A.Y. 2025-26
 

 

(By ICT)
Code: 80300159
SSD: ING-INF/03

LEARNING OUTCOMES: Knowledge of the main applications and operations of radar systems with the necessary basic elements (both theoretical and technical-operational).

KNOWLEDGE AND UNDERSTANDING: Being aware, at the system level, performance in terms of scope, discrimination, ambiguity, Doppler filtering

APPLYING KNOWLEDGE AND UNDERSTANDING: knowing how to deal with new problems with the methods learned

MAKING JUDGEMENTS: the ability to choose among the various methods learned the proper one to face new problems and radar design.

Syllabus – Radar Systems

1. Fundamentals

  • General information on radar.

  • Spectrum usage.

  • Radar measurements:

    • Distance.

    • Radial velocity.

    • Angular location.

2. Radar Equation and Propagation

  • Fundamental radar equation.

  • Receiver and antenna noise.

  • Propagation: attenuation and reflections.

  • Losses.

3. Radar Cross Section and Target Models

  • Radar Cross Section (RCS).

  • Target fluctuation models:

    • Slow fluctuation.

    • Rapid fluctuation.

4. Target Detection

  • Detection of fixed targets.

  • Detection of moving targets.

  • Pulse integration.

5. Decision Theory and Radar Detection

  • Decision criteria.

  • Detection with a single pulse.

  • Detection with N pulses.

6. Radar Types

  • Pulsed radar.

  • Continuous Wave (CW) radar.

  • Frequency Modulated Continuous Wave (FMCW) radar.

  • Automotive radar.

MACHINE LEARNING METHODS FOR PHYSICS – 8 CFU (block D)

Mathematical-Methods
2 YEAR (Block D)
2 semester 8 CFU
(from Physics LM-17 )
Prof. Michele BUZZICOTTI A.Y. 2025-26 program 📑
Code: 80300140
SSD: FIS/01
https://www.master-mass.eu/

 

  • PREREQUISITES: Basic concepts of Linear Algebra, Mathematical Analysis and Python Programming
  • OBJECTIVE: The lectures are thought to give a solid knowledge of the theoretical Machine Learning (ML) background. A special focus is given to the ML application for data analysis of physical systems. The students will also learn how to implement a typical ML model using the standard libraries in a Python environment.