Quantum Computing (D-opt)

Mathematical-Methods
2 YEAR (Block D)
2 semester 8 CFU
(from Physics LM-17 )
Prof. Michele BUZZICOTTI A.Y. 2025-26
Code: 80300140
SSD: FIS/01
https://www.master-mass.eu/

 

  • PREREQUISITES: Basic concepts of Linear Algebra, Mathematical Analysis and Python Programming
  • OBJECTIVE: The lectures are thought to give a solid knowledge of the theoretical Machine Learning (ML) background. A special focus is given to the ML application for data analysis of physical systems. The students will also learn how to implement a typical ML model using the standard libraries in a Python environment.

 

Digital Signal Processing 9cfu (block C1opt-C2-opt)

Digital Signal Processing 9cfu (block C1opt-C2-opt)
1 YEAR II semester  9 CFU
ICT and Internet Engineering
Marina RUGGIERI (cfu)

Tommaso ROSSI (cfu)


A.Y. 2025-26
Code: 80300072
SSD: ING-INF/03

OBJECTIVES

LEARNING OUTCOMES: The course aims at providing to the students the theoretical and practical tools for the development of design capabilities and implementation awareness of Digital Signal Processing (DSP) systems and applications.

KNOWLEDGE AND UNDERSTANDING: Students are envisaged to understand the DSP theoretical, design and algorithm elements and to be able to apply them in design exercises.

APPLYING KNOWLEDGE AND UNDERSTANDING: Students are envisaged to apply broadly and to personalize the design techniques and algorithm approaches taught during the lessons.

MAKING JUDGEMENTS: Students are envisaged to provide a reasoned description of the design and algorithm techniques and tools, with proper integrations and links.

COMMUNICATION SKILLS: Students are envisaged to describe analytically the theoretical elements and to provide a description of the design techniques and the algorithm steps, also providing eventual examples.

LEARNING SKILLS: Students are envisaged to deal with design tools and manuals. The correlation of topics is important, particularly when design trade-offs are concerned.

BACKGROUND

A good mathematical background (in particular on complex numbers, series, functions of complex variable) is strongly recommended.

PROGRAMME

(Prof. M.RUGUERI)

PART I – Discrete-time signals and systems; sampling process; Discrete-time Fourier transform (DTFT); Z-transform; Discrete Fourier Series (DFS).
PART II – Processing algorithms: introduction to processing; Discrete Fourier Transform (DFT); finite and long processing; DFT-based Processing; Fast Fourier Transform (FFT); processing with FFT.
PART III – Filter Design: introduction to digital filters: FIR and IIR classification; structures, design and implementation of IIR and FIR filters; analysis of finite word length effects; DSP system design and applications;
PART IV – Random sequences; processing of random sequences with digital filters; introduction to random sequence estimation; estimators of mean, variance and auto-covariance of random sequences with performance analysis; power spectrum estimation; periodogram and performance analysis; smoothed estimators of the power spectrum and performance analysis; use of FFT in power spectrum estimation.

(Dott. Tommaso ROSSI)

PART V – VLAB: applications with design examples and applications of IIR and FIR filters, Matlab-based lab and exercises; use of Matlab in the power spectrum estimation.

 

VERIFICATION CRITERIA

a) Combination of: design test (written); deepening on DSP System development (written); oral.
The design test is propedeutic to the oral one.
The course offers a verify in progress (with a related recovery date) that if passed exempts from the design test of the exam session.

b) The written exam includes design exercises.
The oral part envisages questions on the whole program and a discussion on the design test.

c) The written exam is scored from FAIL to EXCELLENT. The design test and the oral concur almost evenly to the final score (x/30).

d) The final score is based on the level of knowledge of the theoretical, design and algorithm elements and tools as well as on their effective use in design exercises; in particular, the final evaluation refers to 70% of the student’s knowledge level and for 30% to her/his capability of expressing the knowledge and providing an autonomous judgment in the design and oral exam phases.

The detailed final evaluation criteria are as follows:

Failed exam: deep lack and/or inaccuracy of knowledge and comprehension of topics and design techniques; limited capabilities in analysis and synthesis, critical ability and judgment; designs and topics are presented with a non-coherent and technically inadequate approach.
18-20: sufficient knowledge and comprehension of topics and design techniques with possible imperfections; sufficient capabilities in analysis, synthesis and autonomous judgment; designs and topics are presented with a not too much coherent and technically appropriate approach.
21-23: flat knowledge and comprehension of topics and design techniques; appropriate capabilities in analysis and synthesis with fair autonomous judgment; designs and topics are presented with sufficient coherency and technically appropriate approach.
24-26: more than fair knowledge and comprehension of topics and design techniques; good capabilities in analysis and synthesis with good autonomous judgment; designs and topics are presented with coherency and technically appropriate approach.
27-29: complete knowledge and very good comprehension of topics and design techniques; remarkable capabilities in analysis and synthesis with very good autonomous judgment; designs and topics are presented with a rigorous and technically very appropriate approach.
30-30L: excellent knowledge and complete comprehension of topics and design techniques; excellent capabilities in analysis and synthesis with excellent autonomous judgment and originality; designs and topics are presented with a rigorous and technically excellent approach.

TEXTBOOKS

[1] “Digital Signal Processing Exercises and Applications”, Marina Ruggieri, Michele Luglio, Marco Pratesi. Aracne Editrice, ISBN: 88-7999-907-9.
[2] The River Publishers’ Series in Signal, Image & Speech Processing, “An Introduction to Digital Signal Processing: A Focus on Implementation”, Stanley Henry Mneney. River Publishers, ISBN: 978-87-92329-12-7.
[3] Slides (exercises are also included therein) published on the teaching website.

CONTROL OF ELECTRICAL MOTORS AND VEHICLES (C1-C2-E)

CEM
2 YEAR II semester 6 CFU
Cristiano M. Verrelli  
 

 

A.Y. 2025-26 (ex Control of Electrical Machines (B-C-E)
Code:8039782
SSD: ING-INF/04

 

LEARNING OUTCOMES: The course aims to provide a unified exposition of the most important steps and concerns in mathematical modeling and design of estimation and control algorithms for electrical machines such as:
– permanent magnet synchronous motors
– permanent magnet stepper motors
– synchronous motors with damping windings
– induction (asynchronous) motors
– synchronous generators.

KNOWLEDGE AND UNDERSTANDING: Students should be able to gain profound insight into the fundamental mathematical modeling and control design techniques for electrical machines, which are of interest and value not only to engineers engaged in the control of electric machines but also to a broader audience interested in (nonlinear) control design.

APPLYING KNOWLEDGE AND UNDERSTANDING: Students should be able to deeply understand mathematical modeling through nonlinear differential equations, stability and nonlinear control theory concepts, and design of (nonlinear) adaptive controls containing parameter estimation algorithms (important for applications). Students should be able to apply the related knowledge to learning control of robotic manipulators and cruise/yaw rate control of electric vehicles.

MAKING JUDGEMENTS: Students should be able to identify the specific design scenario and apply the most suitable techniques. Students should be able to compare the effectiveness of different controls while analyzing theoretical/experimental advantages and drawbacks.

COMMUNICATION SKILLS: Students should be able to use a single notation and modern (nonlinear) control terminology. Students should be able to exhibit a logical and progressive exposition starting from basic assumptions, structural properties, modeling, control, and estimation algorithms. Students are also expected to be able to read and capture the main results of a technical paper concerning the topics of the course, as well as to effectively communicate in a precise and clear way the content of the course. Tutor-guided individual projects (including Maple and Matlab-Simulink computer simulations and lab visits) invite intensive participation and exchanging ideas.

LEARNING SKILLS: Being enough skilled in the specific field to undertake the following studies characterized by a high degree of autonomy.

TEXTS

R. Marino, P. Tomei, C.M. Verrelli, Induction Motor Control Design, Springer, 2010.
Latest journal papers.

VERIFICATION OF THE KNOWLEDGE

Verify the knowledge and skills acquired by the student on the topics covered by the program. The intermediate exams, the final written tests, and the oral exam will consist of questions related to the topics covered by the program of the course. The questions are aimed at ascertaining the student’s knowledge and his/her reasoning skills in making logical connections between the different topics.

The final vote of the exam is expressed out of thirty and will be obtained through the following graduation system:

Not pass: important deficiencies in the knowledge and in the understanding of the topics; limited capacity for analysis and synthesis, frequent mistakes and limited critical and judgmental capacity, inconsistent reasoning, inappropriate language.

18-21: the student has acquired the basic concepts of the discipline and has an analytical capacity that comes out only with the help of the teacher. The way of speaking and the language used are almost correct, though not precise.

22-25: the student has acquired the basic concepts of the discipline in a discrete way; he/she knows how to discuss the various topics; he/she has an autonomous analysis capacity while adopting a correct language.

26-29: the student has a well-structured knowledge base. He/She is able to independently adopt a correct logical reasoning;  notations and technical language are correct.

30 and 30 cum laude: the student has a complete and in-depth knowledge base. The cultural references are rich and up-to-date while being expressed by means of brilliant technical language.

Radar and Localization (C2)

Radar and Localization (C2)
2 YEAR II semester 6 CFU
Prof. Mauro Leonardi A.Y. 2025-26
 

 

(By ICT)
Code: 80300159
SSD: ING-INF/03

Objectives: Knowledge of the main applications and operations of radar systems with the necessary basic elements, both theoretical and technical-operational. Being aware, at the system level, performance in terms of scope, discrimination, ambiguity, Doppler filtering (MTI Improvement Factor) and Pulse Compression (analysis of waveform radar). Course content General information on radar, spectrum usage, radar measurements (distance, radial velocity, angular location). Fundamental radar equation, the noise of the receiver and antenna, propagation (attenuation and reflections), losses. Radar Cross Section and targets models (slow and rapid fluctuation); detection of targets (fixed and moving); integration of the pulses. Decision Theory and radar detection: decision criteria, detection of single pulse, revelation with N pulses. Doppler radar and Moving Target Indicator (MTI): Doppler effect and structure of the coherent transceiver, MTI filtering, Improvement factor and its limitations, Moving Target Detector, Matched filter and Pulse Compression, Chirp signal, ambiguity function. Global Navigation Satellite Systems principles and Mobile Terminal Localization.

MACHINE LEARNING METHODS FOR PHYSICS (D)

Mathematical-Methods
2 YEAR (Block D)
2 semester 8 CFU
(from Physics LM-17 )
Prof. Michele BUZZICOTTI A.Y. 2025-26
Code: 80300140
SSD: FIS/01
https://www.master-mass.eu/

 

  • PREREQUISITES: Basic concepts of Linear Algebra, Mathematical Analysis and Python Programming
  • OBJECTIVE: The lectures are thought to give a solid knowledge of the theoretical Machine Learning (ML) background. A special focus is given to the ML application for data analysis of physical systems. The students will also learn how to implement a typical ML model using the standard libraries in a Python environment.

 

COMPUTER VISION (2024-25)

COMPUTER VISION (2024-25)
2 YEAR II semester  6 CFU
Arianna Mencattini A.Y. 2023-24 (ex MEASUREMENT SYSTEMS FOR MECHATRONICS)
A.Y. 24-25
Code: 8039787
SSD: ING/INF/07

LEARNING OUTCOMES:
Learning of basic concepts in digital image processing and analysis as a novel measurement system in biomedical fields. The main algorithms will be illustrated, particularly devoted to the mechatronics fields.

KNOWLEDGE AND UNDERSTANDING:
The student acquires the knowledge related to the possibility to use an image analysis platform to monitor the dynamics of a given phenomenon and to extract quantitative information from digital images such as object localization and tracking in digital videos.

APPLYING KNOWLEDGE AND UNDERSTANDING:
The student acquires the capability to implement the algorithms in Matlab through dedicated lessons during the course to the aim of being able to autonomously develop new codes for the solution of specific problems in different application fields.

MAKING JUDGEMENTS:
The student must be able to integrate the basic knowledge provided with those deriving from the other courses such as probability, signal theory, and pattern recognition. some fundamentals of measurement systems as well as of basic metrological definitions will be provided in support of background knwoledge.

COMMUNICATION SKILLS:
The student solves a written test and develops a project in Matlab that illustrates during the oral exam. The project can be done in group to demonstrate working group capabilities.

LEARNING SKILLS:
Students will be able to read and understand scientific papers and books in English also to deepen some topics. In some cases, students will develop also experimental tests with time-lapse microscopy acquisition in department laboratory.

SYLLABUS

Fundamentals of metrology. Basic definitions: resolution, accuracy, precision, reproducibility and their impact over an image based measurement system . Image processing introduction. Image representation. Spatial and pixel resolution. Image restoration. Deconvolution. Deblurring. Image quality assessment. Image enhancement. Image filtering for smoothing and sharpening. Image segmentation: pixel based (otsu method), edge based, region based (region growing), model based (active contour, Hough transform), semantic segmentation. Morphological operators. Object recognition and image classification. Case study: defects detection, object tracking in biology, computer assisted diagnosis, facial expression in human computer interface.
Matlab exercises.

TEXTS

Digital image processing, Gonzalez and Woods, Prentice Hall, New York, 2002.

BiPM, I. E. C., IFCC, I., IUPAC, I., & ISO, O. (2012). The international vocabulary of metrology— basic and general concepts and associated terms (VIM). JCGM, 200, 2012.

ATTENDANCE

Although attendance is optional, it is strongly recommended to follow the lessons. The professor recommends the students to subscribe the course on the Delphi website. The teams platform will be used as a consequence to communicate with the Professor, ask for doubts, and download the materials used for the lessons.

INTEGRATED SOLUTIONS FOR SUSTAINABLE MOBILITY AND ENERGY PRODUCTION (C2)

CEM
1 YEAR II semester 6 CFU
(from Mechanical)
Lorenzo BARTOLUCCI (3cfu)
Matteo BALDELLI (3cfu)
A.Y. 2024-25
Code: 80300136
SSD: ING-IND/08
  • Prerequisites: No prior kknowledge is required, although notions about energy systems and an understanding of error and data analysis can facilitate the student. All the knowledge necessary to pass he exam will be provided during the course.
  • OBJECTIVES: The goal of the course is to provide students with both a detailed and holistic view of the energy landscape for sustainable mobility and its impact on the overall energy system. The course aims to bridge the production of key energy carriers (electricity, hydrogen, biofuels, etc.) with their use in mobility, addressing issues of integration and optimization. To this end, students will expand their understanding of the fundamental physics behind these technologies, combining theoretical/modeling aspects with experimental approaches through laboratory activities. Lastly, particular attention will be given to the presentation and critical analysis of data obtained both experimentally and through numerical modeling.

 

Electric Propulsion (C2)

Electric Propulsion (C2)
1 YEAR (Block C2)
II semester 6 CFU
(from Mechanics – Energetics)
Prof. Marcello PUCCI
A.Y. 2024-25
Code: 80300151
SSD: ING-IND/32

LEARNING OUTCOMES:
The course aims to provide the students some theoretical instruments necessary for the comprehension and related application of the fundamentals of electric and hybrid electric propulsion systems, with particular emphasis to the on-wheel and ship propulsion.
The course will permit the students to acquire and apply the fundamentals of modelling and control of electric drives for the electric and hybrid electric on-wheel and ship propulsion, beside the supply and storage systems. The issues of the impact of electric vehicles on the power grid will also be discussed, with reference to modern vehicle-to-grid (V2G) and grid-to-vehicle (G2V) technologies.

KNOWLEDGE AND UNDERSTANDING:
In order to improve understanding of the topics, the implementation of drive trains simulation models will be addressed by using Simscape Electrical libraries in the Matlab-Simulink environment. The students will acquire the capability of comprehend and demonstrate the aware knowledge of the behavior of electric and hybrid electric vehicles, with particular reference to their electric propulsion, to the electric motors, power converters and related control systems- to the supply and storage systems. The understanding will be enhanced by the comparison between different types of electric drives, power electronic converters and
related control systems, as well as different types of storage systems. Several kinds of supplies and storage systems will be analyzed as well, with particular emphasis to the fuel
cells supplied vehicles.

APPLYING KNOWLEDGE AND UNDERSTANDING:
At the end of the course students will have to show the ability to independently apply the concepts learned with particular reference to the sizing of the drive train for electric and hybrid electric vehicles, power sources as well as the issues related to the interaction of energy storage on board of vehicles with the distribution network in terms of vehicle-to-grid (V2G) and grid-to-vehicle (G2V).

MAKING JUDGEMENTS:
Students will be able to collect and process independently specialized technical information on the design and control of electric drives as well as on energy storage systems used in electric and hybrid electric propulsion by road and sea and finally verify their validity.

COMMUNICATION SKILLS:
Students will be able to interact with specialists in power electronics and electric drives in order to elaborate the technical information necessary for the development of a design activity to be carried out individually or in groups.

LEARNING SKILLS:

The expertises acquired during the course will allow students to undertake higher-level training courses or apply for specialist technical roles in companies in the sector with a good degree of autonomy.

Prerequisities

It is suggested to have the basic knowledge of Electrical Network Analysis and Power Electronics

 

SYLLABUS

The course will be articulated in the following way:
– Electric Vehicles
– Hybrid Electric Vehicles
– Electric Propulsion Systems for vehicles
– Series Hybrid Electric Drive Train Design
– Parallel Hybrid Electric Drive Train Design
– Energy Storages (Batteries, Supercapacitors, – Ultrahigh-Speed Flywheels, Hybrid)
– Fuel Cell Vehicles
– Ship propulsion systems
– Vehicle to Grid (V2G) and Grid to Vehicle (G2V)

TEXTS

Educational material provided by the teacher

– John M. Miller, Propulsion Systems for Hybrid Vehicles, IET, 2008
– Iqbal Husain, Electric and Hybrid Vehicles: Design Fundamentals, 2010, CRC Press
– Mehrdad Ehsani, Yimin Gao, Ali Emadi, Modern Electric, Hybrid Electric, and Fuel Cell
Vehicles: Fundamentals, Theory, and Design, 2017, CRC Press

Deep Learnig and applications (block C1-opt)

Deep Learning
2 YEAR II semester  6 CFU

Eugenio Martinelli
A.Y. 2024-25 new
Didatticaweb
Code:
SSD: ING-INF/01

PREREQUISITES

Basic knowledge of probability theory, signal theory, and pattern recognition.

FORMATIVE OBJECTIVES

LEARNING OUTCOMES:
Learning the basic concepts of deep learning algorithms. The main Machine Learning algorithms will be covered, followed by a focus on those related to deep learning, with particular emphasis on their application in the field of mechatronics.

KNOWLEDGE AND UNDERSTANDING:
The student acquires knowledge related to the field of Machine Learning, with particular reference to the ability to extract quantitative and qualitative information from images and videos and multivariate data and their subsequent processing for regression and classification tasks.

APPLYING KNOWLEDGE AND UNDERSTANDING:
The student acquires the capability to implement the algorithms in Matlab through dedicated lessons during the course to the aim of being able to autonomously develop new codes for the solution of specific problems in different application fields.

MAKING JUDGEMENTS:
The student must be able to integrate the basic knowledge provided with those deriving from the other courses, such as probability, signal theory, and pattern recognition.

COMMUNICATION SKILLS:
The student develops a project in Matlab that illustrates during the oral exam. The project can be done in groups to demonstrate working group capabilities.

LEARNING SKILLS:
Students will need to be able to read and understand scientific texts and articles in English for in-depth exploration of the topics covered. They should also independently expand their knowledge of the subject to include topics not directly addressed in the course, particularly those connected with the rapid technological developments in the field of Deep Learning and, more generally, in machine learning.

SYLLABUS

Today, deep neural networks surpass traditional hand-crafted algorithms and match human performance in various complex tasks, including image recognition, natural language processing, and prediction models. This course offers a comprehensive introduction to neural networks (NNs), covering traditional feedforward (FFNN) and recurrent (RNN) neural networks, as well as the most advanced deep-learning models like convolutional neural networks (CNN), Variational Autoencoders, and Diffusion models.

The primary objective of the course is to equip students with the theoretical knowledge and practical skills needed to understand and utilize neural networks (NN), while also familiarizing them with deep learning techniques for solving complex engineering challenges.
This goal is pursued in the course by:
• Describing the most important algorithms for NN training (e.g., backpropagation, adaptive gradient algorithms, etc.)
• Illustrating the best practices for successful training and using these models (e.g., dropout, data augmentation, etc.) in a practical session using a phyton environment.
• Providing an overview of the most successful Deep Learning architectures (e.g., convolutional networks, autoencoder for embedding, diffusion models, etc.)
• Providing an overview of the most successful applications with particular emphasis on models for solving visual recognition tasks.

TEXTS

Pattern recognition and machine learning, Christopher Bishop.

Deep Learning, Ian Goodfellow et al.

– slides of the professor