CONTROL OF ELECTRICAL MOTORS AND VEHICLES (C1-C2-E)

CEM
2 YEAR II semester 6 CFU
Cristiano M. Verrelli  
 

 

A.Y. 2025-26 (ex Control of Electrical Machines (B-C-E)
Code:8039782
SSD: ING-INF/04

 

LEARNING OUTCOMES: The course aims to provide a unified exposition of the most important steps and concerns in mathematical modeling and design of estimation and control algorithms for electrical machines such as:
– permanent magnet synchronous motors
– permanent magnet stepper motors
– synchronous motors with damping windings
– induction (asynchronous) motors
– synchronous generators.

KNOWLEDGE AND UNDERSTANDING: Students should be able to gain profound insight into the fundamental mathematical modeling and control design techniques for electrical machines, which are of interest and value not only to engineers engaged in the control of electric machines but also to a broader audience interested in (nonlinear) control design.

APPLYING KNOWLEDGE AND UNDERSTANDING: Students should be able to deeply understand mathematical modeling through nonlinear differential equations, stability and nonlinear control theory concepts, and design of (nonlinear) adaptive controls containing parameter estimation algorithms (important for applications). Students should be able to apply the related knowledge to learning control of robotic manipulators and cruise/yaw rate control of electric vehicles.

MAKING JUDGEMENTS: Students should be able to identify the specific design scenario and apply the most suitable techniques. Students should be able to compare the effectiveness of different controls while analyzing theoretical/experimental advantages and drawbacks.

COMMUNICATION SKILLS: Students should be able to use a single notation and modern (nonlinear) control terminology. Students should be able to exhibit a logical and progressive exposition starting from basic assumptions, structural properties, modeling, control, and estimation algorithms. Students are also expected to be able to read and capture the main results of a technical paper concerning the topics of the course, as well as to effectively communicate in a precise and clear way the content of the course. Tutor-guided individual projects (including Maple and Matlab-Simulink computer simulations and lab visits) invite intensive participation and exchanging ideas.

LEARNING SKILLS: Being enough skilled in the specific field to undertake the following studies characterized by a high degree of autonomy.

TEXTS

R. Marino, P. Tomei, C.M. Verrelli, Induction Motor Control Design, Springer, 2010.
Latest journal papers.

VERIFICATION OF THE KNOWLEDGE

Verify the knowledge and skills acquired by the student on the topics covered by the program. The intermediate exams, the final written tests, and the oral exam will consist of questions related to the topics covered by the program of the course. The questions are aimed at ascertaining the student’s knowledge and his/her reasoning skills in making logical connections between the different topics.

The final vote of the exam is expressed out of thirty and will be obtained through the following graduation system:

Not pass: important deficiencies in the knowledge and in the understanding of the topics; limited capacity for analysis and synthesis, frequent mistakes and limited critical and judgmental capacity, inconsistent reasoning, inappropriate language.

18-21: the student has acquired the basic concepts of the discipline and has an analytical capacity that comes out only with the help of the teacher. The way of speaking and the language used are almost correct, though not precise.

22-25: the student has acquired the basic concepts of the discipline in a discrete way; he/she knows how to discuss the various topics; he/she has an autonomous analysis capacity while adopting a correct language.

26-29: the student has a well-structured knowledge base. He/She is able to independently adopt a correct logical reasoning;  notations and technical language are correct.

30 and 30 cum laude: the student has a complete and in-depth knowledge base. The cultural references are rich and up-to-date while being expressed by means of brilliant technical language.

Mechanics Of Systems For Simulations (block A) (since 2025-26)

Mechanics Of Systems For Simulations (block A) (since 2025-26)
1 YEAR
1 semester 6 CFU
Marco Ceccarelli A.Y. 2025-26
Code: 80300216 
SSD: ING-IND-13
(by Engineering Sciences)

OBJECTIVES

LEARNING OUTCOMES: The course aims to teach students the knowledge and tools that are needed to address the issues that are related to the identification, modeling, analysis, and design of multi-body planar systems in English language and terminology

KNOWLEDGE AND UNDERSTANDING: modeling and procedures to recognize the structure and characteristics of mechanisms and machines

APPLYING KNOWLEDGE AND UNDERSTANDING: acquisition of analysis procedures for the understanding of kinematic and dynamic characteristics of mechanisms and machines

MAKING JUDGEMENTS: possibility of judging the functionality of mechanisms and machines with their own qualitative and quantitative assessments

COMMUNICATION SKILLS: learning technical terminology and procedures for presenting the performance of mechanisms

LEARNING SKILLS: learning technical terminology and procedures for the presentation of the performance of mechanisms


PREREQUISITES: knowledge of basic mechanics of rigid bodies and computation skills

SYLLABUS

Structure and classification of planar mechanical systems, kinematic modeling, mobility analysis, graphical approaches of kinematics analysis, kinematic analysis with computer-oriented algorithms; dynamics and statics modeling, graphical approaches of dynamics analysis, dynamic analysis with computer-oriented algorithms, performance evaluation; elements of mechanical transmissions.

BOOKS:

Lopez-Cajùn C., Ceccarelli M., Mecanismos, Trillas, Città del Messico
Shigley J.E., Pennock G.R., Uicker J.J., “Theory of Machines and Mechanisms”, McGraw-Hill, New York
Handnotes and papers by the teachers

MACHINE LEARNING METHODS FOR PHYSICS (D)

Mathematical-Methods
2 YEAR (Block D)
2 semester 8 CFU
(from Physics LM-17 )
Prof. Michele BUZZICOTTI A.Y. 2025-26
Code: 8067607
SSD: FIS/01
https://www.master-mass.eu/

 

  • PREREQUISITES: Basic concepts of Linear Algebra, Mathematical Analysis and Python Programming
  • OBJECTIVE: The lectures are thought to give a solid knowledge of the theoretical Machine Learning (ML) background. A special focus is given to the ML application for data analysis of physical systems. The students will also learn how to implement a typical ML model using the standard libraries in a Python environment.

 

ERASMUS+ A.A.2025-2026 – meeting 5 February 2025

Erasmus+

On the occasion of the publication of the ERASMUS call, the Engineering Macroarea is organizing an information event that will be held on Wednesday 5, February 2025, from 2:30 pm in the Conference Room (Aula CONVEGNI – Ground floor of the Didactic building Engineering), aimed at all students interested in learning more about the Erasmus+ program. During the event, the Erasmus Office staff will provide more information on the call and the program.

ERASMUS+ A.A.2025-2026: Candidatura Erasmus+ – TOR VERGATA

https://mobint.uniroma2.it/erasmus/candidatura/default.aspx

Deadline: 3° marzo 2025

2025_LocandinaErasmus+Infoday

INTERNATIONAL OPEN DAY 2025

International Open Day Tor Vergata 2025

Schools of Economics, Engineering, Humanities, Law, Mathematics, Physics and Natural Sciences and Medicine and Surgery, Tor Vergata University of Rome.

On January 22, 2025, from 03:00 to 04.00 p.m. (CEST Time) Tor Vergata University of Rome is pleased to invite you to the International Open Day, the event dedicated to the presentation of the English-taught degree courses offered by the Schools of Economics, Engineering, Humanities, Law, Mathematics, Physics and Natural Sciences and Medicine and Surgery.

On this occasion, you will also learn about the specific requirements for admission to the above courses, tuition fees and scholarships, accommodation, and how to enjoy your life in Rome. You can take a Virtual Tour of our University and learn about all the opportunities our community offers to each student. This will help you decide on your future at Tor Vergata University of Rome.

Click here to register for the International Open Day. You will then receive an email with a link to access the event platform www.utov.it/iod .

In the meantime meet our Student Ambassadors: SAP PROGRAM