VLSI CIRCUIT AND SYSTEM DESIGN

VLSI
1 YEAR II semester  9 CFU
Luca DI NUNZIO (9 cfu) A.Y. 2021-22
Luca DI NUNZIO (5 cfu)

Vittorio MELINI (2 cfu)

Sergio SPANO’ (2 cfu)

since A.Y. 2022-23
TBD A.Y. 2025-26
Code: 8039166
SSD: ING-INF/01

PREREQUISITES:

It is strictly suggested to take the “Digital Electronics” exam before attending this course. You can contact Prof. Luca DI NUNZIO for any doubts regarding the topic.

LEARNING OUTCOMES:

The VLSI CIRCUIT AND SYSTEM DESIGN course aims to teach the basics of combinational and sequential circuits that represent the basic blocks of any modern digital system. In addition, the course will provide the basic concepts of the VHDL language

KNOWLEDGE AND UNDERSTANDING:

At the end of the course, the student will learn the basic concepts of combinational and sequential circuits that are the basis of any system and the basic concepts of the VHDL language useful for the design of digital systems

APPLYING KNOWLEDGE AND UNDERSTANDING:

Ability to analyze the characteristics of digital circuits with particular emphasis on timing and power consumption.

MAKING JUDGEMENTS:

The student will understand the acquired knowledge independently and critically to be able to connect and integrate the various aspects related to the design of digital systems

COMMUNICATION SKILLS:

The student must be able to communicate their knowledge acquired during the course in clear, correct, and technical language.

LEARNING SKILLS:

Ability to critically approach a digital circuit design problem, know how to manage it, and find implementation solutions using the VHDL language

SYLLABUS:

(L. DI NUNZIO)

Digital electronics basic concepts
Floating-point and fixed-point numeric representation formats
Combinatorial circuits: encoders, decoders, multiplexers
Sequential circuits: flip flops, latch registers, counters, memories
Introduction to VHDL: entity and architecture, levels of abstraction, HDL design flow, combinatorial and sequential processes, objects in VHDL test bench
Practical activities of circuit design in VHDL

(S. SPANO’)

Central unit
ALU
System registers
Address logic
System buses
Scheduler
Branching of instructions
Interrupts
Bus synchronization
RAM memories
ROM memories
Flash memories
CAM memories

 

ROBOT MECHANICS

ROBOT MECHANICS
1 YEAR (Blocks B|C)
2 YEAR (Blocks A|D|E)
1 semester 9 CFU
Marco Ceccarelli (6/9 cfu)

Matteo Russo (3/6 cfu)

A.Y. 2021-22

A.Y. 2022-23

Matteo Russo (9cfu)
A.Y. 2023-24
A.Y. 2024-25
Code: 8039785
SSD: ING-IND/13

LEARNING OUTCOMES: This course will provide students with the knowledge and tools needed to model and analyse robotic manipulators in terms of mechanical performance. Students will learn how to design, evaluate, and control industrial and service robots.

KNOWLEDGE AND UNDERSTANDING: The student will learn to analyse robotic systems by modelling their kinematics and dynamics and thus finding their key operational parameters. Furthermore, the student will learn how to design a manipulator from its operational requirements, such as workspace, velocity, and payload.

APPLYING KNOWLEDGE AND UNDERSTANDING: The student will apply this knowledge to design, model, and evaluate robots with examples of use cases. Once identified the joints and bodies that compose a robot, the student will be able to numerically characterize its operation and mobility. Furthermore, the student will be able to critically select a robot type for a given manipulation task.

MAKING JUDGEMENTS: The student will demonstrate their understanding of robot operation by developing and presenting a practical use case, in which they will examine autonomously and critically the challenges behind robot design and application.

COMMUNICATION SKILLS: During the course, students discuss key topics, working on a written project on manipulation analysis of their own choice. Project results are then presented at the end of the course.

LEARNING SKILLS: During the course, students are involved in the lecture for a continuous stimulus to verify their understanding of robot mechanics. The knowledge acquired during the course is also verified in the final project on manipulation analysis.

REQUIREMENTS: The student should have already attended the fundamental courses on calculus, geometry, and physics. The understanding of rigid body mechanics and basic programming skills (MATLAB) are required, as well as knowledge of mechanism design and analysis.

PROGRAMME:

  1. Architecture and classification of industrial and service robots
    1. Definitions: kinematic chains, joints, mobility
    2. Manipulation analysis
    3. Types of manipulators
  2. Kinematics
    1. Reference frames
    2. Denavit-Hartenberg notation
    3. Forward kinematics
    4. Inverse kinematics
    5. Jacobian and singularities
    6. Workspace
    7. Path planning
  3. Statics and dynamics
    1. Equilibrium
    2. Equation of motion
    3. Grasp mechanics
  4. Other designs
    1. Actuation technologies
    2. Parallel robots
    3. Compliant robots
    4. Soft and continuum robots

EXAM:

The exam is divided into a written and oral test. The written test consists of three exercises regarding practical use-cases of industrial and service robots. In alternative, a project report developed during the course can be evaluated. In the oral test, the student will discuss with a critical perspective robot functioning. In alternative, the developed project on manipulation analysis can be presented and discussed.

INTEGRATED SENSORS

INTEGRATED SENSORS
1 YEAR (Block A|C|D|E)
2 YEAR (Block B)
1 semester 9 CFU
Corrado Di Natale A.Y. 2019-20 (new name, ex Electronic Devices and Sensors)
Alexandro Catini (6cfu)
Corrado  Di Natale (3cfu)
A.Y. 2022-23
A.Y. 2023-24
Alexandro Catini (8cfu)
Corrado  Di Natale (1cfu)
A.Y. 2024-25
Code: 8039927
SSD: ING-INF/01

LEARNING OUTCOMES:

To introduce the student to modern sensor technologies and their major applications.

KNOWLEDGE AND UNDERSTANDING:

To make the student condition to analyze the sensor performance and to design simple sensors’ interface circuit.

APPLYING KNOWLEDGE AND UNDERSTANDING:

Capability to select sensors for each specific application MAKING JUDGEMENTS:
Evaluate in the different contexts which are the most suitable sensors and evaluate the performance using a standardized parameters set.

COMMUNICATION SKILLS:

Capability to write synthetic reports about the working principles of sensors

LEARNING SKILLS:

To learn how to solve sensors’ circuits to determine their performance and to optimally design sensor systems.

SYLLABUS:

Electronic properties of materials: semiconductors.

General properties of sensors;

Sensitivity and resolution.

Temperature sensors: thermistors, integrated sensors, thermocouples;
Mechanic sensors: Strain gauges: Introduction to MEMS: accelerometer, gyroscope, pressure and flow sensors;

Magnetic sensors;

Optical sensors: photodiodes and image sensors;

infrared sensors; interface circuits for resistive and capacitive sensors