CONTROL OF MECHANICAL SYSTEMS – 9 CFU

CONTROL OF MECHANICAL SYSTEMS – 9 CFU
2 YEAR
1 semester 9 CFU
Riccardo MARINO Since 2019-20
Teaching programs (Schede d’Insegnamento-GOMP)📑

Code: 8039823
SSD: ING-INF/04

LEARNING OUTCOMES:

Ability to understand scientific papers on the control of mechanical systems

KNOWLEDGE AND UNDERSTANDING:

Knowledge of dynamic modeling of mechanical systems. Knowledge of basic feedback control techniques for single input single output systems and of decoupling techniques for multi input multi output nonlinear systems

APPLYING KNOWLEDGE AND UNDERSTANDING:

Ability to simulate using Matlab Simulink complex controlled mechanical systems

MAKING JUDGEMENTS:

Ability to evaluate stability, robustness, and performance of a control system

COMMUNICATION SKILLS: Ability to present and discuss an autonomous design project

LEARNING SKILLS: Ability to fully understand a scientific paper on the control of mechanical systems

SYLLABUS:

BASIC CONTROL TOOLS
Bounded- input bounded- output linear systems. Pole placement theorem for controllable and observable linear systems. Luenberger observers for observable systems. Design of dynamic compensators for linear systems. Integral feedback control to reject constant disturbances. PID control. System inverses for minimum phase linear systems. The combination of feedback and feedforward control actions.
ADVANCED CONTROL TOOLS
Linear approximations of nonlinear control systems about operating conditions. The definition of region of attraction for an operating condition. Output feedback compensators with integral actions to control nonlinear systems about a given operating condition. Liapunov matrix equations to determine quadratic Liapunov functions and assess the region of attraction. The definition of the sensitivity transfer function and its properties. The gang of four: sensitivity, complementary sensitivity, load sensitivity and noise sensitivity functions. How to determine the robustness of a control loop using the gang of four functions. Bode’s integral formula and the limitations imposed by unstable open loop poles. Youla parametrization to design stable compensation. Kalman filters, Riccati equations and robust control design.

CONTROL DESIGN FOR MULTIVARIABLE NONLINEAR SYSTEMS
Relative degree for a single input single output nonlinear system. State feedback control design for input-output linearization. State feedback linearization when the relative degree is equal to the state space dimension. The definition of nonlinear inverse systems. Relative degrees or decoupling indices for multivariable (multi-input, multi-output) nonlinear systems. The definition of the decoupling matrix. State feedback control design for input-output linearization when the decoupling matrix is full rank using the Penrose pseudoinverse. State feedback linearization when the sum of relative degrees is equal to the state space dimension and the decoupling matrix is full rank.

CASE STUDIES OF NONLINEAR MECHANICAL CONTROL SYSTEMS
Control of bycicles, robots, vehicles and aircrafts

Students from “Engineering Sciences” at Tor Vergata

To apply for the Master of Science in Mechatronics Engineering, there are two application windows, exclusively used by students who do not need a student visa and whose Bachelor’s Degree*** is awarded by an Italian Institution.
II additional window: in February

(*You can also apply if you must graduate in the October session.)

READ CAREFULLY THE CALL FOR APPLICATION PUBLISHED IN HOW TO APPLY

CALL for DiscoLAZIO 2022/2023

CALL for DiscoLAZIO 2022/2023

Disclaimer: This guide has been created by Tor Vergata with the purpose of supporting first-year international students in filling up DiscoLazio application because modules are written in Italian only by the Regional Body. Students will find a screenshot of the form they have to fill out with the one-to-one fields translation below. Tor Vergata is not responsible for any mistake made by the students who are pleased to carefully read the Call and related documents before starting the application.

Bando Lazio DiSCo 2022

deadline 20/07/2022

Student Welcome 2022

Student Welcome 2022

A traditional event dedicated to welcoming and orientation activities for all new students arriving at Tor Vergata University of Rome.

We are very happy to announce that the Students Welcome 2022 will be held in presence!

The Students Welcome is a traditional event taking place in the first weeks of the new academic year  (5 – 23 September 2022) dedicated to welcoming and orientation activities for all new students arriving at Tor Vergata University of Rome.


https://web.uniroma2.it/en/contenuto/students_welcome_2022

Fundamentals of Mechanisms of Systems (block A) (since 2022-23)

Fundamentals of Mechanisms of Systems (block A) (since 2022-23)
1 YEAR
1 semester 6 CFU
Marco Ceccarelli A.Y. 2021-22 to 2024-25

A.Y. 2025-26 new name: 80300216 MECHANICS OF SYSTEMS FOR SIMULATIONS

Code: 803000062
SSD: ING-IND-13
(by Engineering Sciences)

OBJECTIVES

LEARNING OUTCOMES: The course aims to teach students the knowledge and tools that are needed to address the issues that are related to the identification, modeling, analysis, and design of multi-body planar systems in English language and terminology

KNOWLEDGE AND UNDERSTANDING: modeling and procedures to recognize the structure and characteristics of mechanisms and machines

APPLYING KNOWLEDGE AND UNDERSTANDING: acquisition of analysis procedures for the understanding of kinematic and dynamic characteristics of mechanisms and machines

MAKING JUDGEMENTS: possibility of judging the functionality of mechanisms and machines with their own qualitative and quantitative assessments

COMMUNICATION SKILLS: learning technical terminology and procedures for presenting the performance of mechanisms

LEARNING SKILLS: learning technical terminology and procedures for the presentation of the performance of mechanisms


PREREQUISITES: knowledge of basic mechanics of rigid bodies and computation skills

SYLLABUS

Structure and classification of planar mechanical systems, kinematic modeling, mobility analysis, graphical approaches of kinematics analysis, kinematic analysis with computer-oriented algorithms; dynamics and statics modeling, graphical approaches of dynamics analysis, dynamic analysis with computer-oriented algorithms, performance evaluation; elements of mechanical transmissions.

BOOKS:

Lopez-Cajùn C., Ceccarelli M., Mecanismos, Trillas, Città del Messico
Shigley J.E., Pennock G.R., Uicker J.J., “Theory of Machines and Mechanisms”, McGraw-Hill, New York
Handnotes and papers by the teachers

POWERTRAIN TECHNOLOGIES FOR FUTURE MOBILITY – 9 CFU

POWERTRAIN TECHNOLOGIES FOR FUTURE MOBILITY – 9 CFU
1 YEAR (Block C)

2 YEAR (Blocks A|B|D|E)

II semester  9 CFU
Stefano CORDINER (6/9 cfu)
Lorenzo BARTOLUCCI (3/9 cfu)
A.Y. 2021-22

Internal Combustion Engines

Since A.Y. 2022-23 – program 📑

POWERTRAIN TECHNOLOGIES FOR FUTURE MOBILITY

Code: 80300079

80300077 M-6264
SSD: ING/IND/08
(by Mechanical Engineering)

PREREQUISITES: Technical Physics, Fluid Machinery

FORMATIVE OBJECTIVES

LEARNING OUTCOMES:

The course aims to provide students with in-depth scientific training to correctly address the problems of designing, choosing and managing new propulsion systems for sustainable mobility starting from current solutions with internal combustion engines as well as creating the conditions for the development of innovative and low environmental impact solutions. To this end, students will develop in-depth knowledge of the operating principles of propulsion systems for transport and will learn simulation procedures for their verification and sizing. Finally, particular attention is dedicated to the most recent technological development of internal combustion engine technology aimed at overcoming current limits in terms of emissions and efficiency and defining innovative scenarios for sustainable mobility.

KNOWLEDGE AND UNDERSTANDING:
Course aim is to provide the students with tools for the analysis of the performances and the evaluation of proper design solution for internal combustion engines and their core components. At the end of the course, the student will be able to independently understand the functional link between design variables and the performance of internal combustion engines also in case of innovative design,

APPLYING KNOWLEDGE AND UNDERSTANDING:
The course, through the analysis of specific problems and quantitative data, is aimed at providing the tools for analysis and evaluation of the effects of different design choices. The theme of energy efficiency and pollution reduction are at the heart of the teaching organization. The student will be able to interpret and propose design solutions, even innovative ones, adapted to the specificity of the problems that are presented to him.

MAKING JUDGEMENTS:
By studying theoretical and practical aspects of engine design and critically assessing the influence of different design variables, the student will be able to improve his judgment and proposal in relation to design. and the management of internal combustion engines.

COMMUNICATION SKILLS:
The presentation of the theoretical and application profiles underlying the operation of internal combustion engines will be carried out to allow the knowledge of the technical language of the appropriate specialist terminology; The development of communication skills, both oral and written will also be stimulated through classroom discussion, participation in seminary activities and through final tests.

LEARNING SKILLS:
The learning capacity, even individual, will be stimulated through numerical exercises, the drafting of papers on specialized topics, the discussion in the classroom, also aimed at verifying the actual understanding of the topics treated. The learning capacity will also be stimulated by integrative educational aids (journal articles and economic newspapers) in order to develop autonomous application capabilities.

SYLLABUS:

Legislation evolution on Internal Combustin Engines. Definition of the performance of the propulsion systems and their operating characteristics in relation to the mission, driving cycles. Generalities on reciprocating internal combustion engines: Characteristics and classification, thermodynamic and performance analysis of reciprocating internal combustion engines.
Air supply for 4-stroke engines: volumetric efficiency and its evaluation; Design elements of intake systems: quasi-stationary effects; valve sizing; influence of other engine parameters; Variable Valve Actuation systems. 2-stroke engines: construction schemes; Non-stationary phenomena in intake and exhaust ducts: inertia and wave propagation; variable geometry systems; calculation models; Supercharging.
In cylinder charge Motion: Turbulence; swirl, squish, tumble; stratified charge engines.
Traditional and alternative fuels; Properties of motor fuels. Generalities: combustibles; stoichiometric air; calorific value Gaseous fuels: natural gas, hydrogen and mixtures. bio-ethanol, bio-diesel and DME. Characteristics and their use in engines: technical solutions, performance and emissions.
Fuel supply Premixed combustion engines; Non-pre-mixed combustion engines.
Combustion : Analytical elements of combustion; thermodynamics of combustion processes; calculation of the chemical composition and of the adiabatic equilibrium temperature ; transport phenomena ; chemical kinetics.
Pollutant emissions and abatement systems; Emissions: formation mechanisms, effects on health and the environment, measurement of emissions; influence of engine parameters; Innovative combustion solutions, Advanced Thermodynamic Cycles. Sustainable mobility. Operating principles of hybrid vehicles: series and parallel solution; motors a.c. and electrical employees; regenerative braking; lithium batteries, performance and prospects. Plug-in hybrid vehicles, i.c. engines “range extender”. Innovative control logics for optimal powersplitting between the different energy sources. Electric vehicles, characteristics and prospects. Numerical simulation tools will be presented for all course topics

ATTENDANCE

Course attendance is strongly recommended. During the course, students are invited to interact with the Professor during the class or office hours for any clarification or insight in specific topics related to the program.