INTEGRATED SENSORS

INTEGRATED SENSORS
1 YEAR (Block A|C|D|E)
2 YEAR (Block B)
1 semester 9 CFU
Corrado Di Natale A.Y. 2019-20 (new name, ex Electronic Devices and Sensors)
Alexandro Catini (6cfu)
Corrado  Di Natale (3cfu)
A.Y. 2022-23
A.Y. 2023-24
Alexandro Catini (8cfu)
Corrado  Di Natale (1cfu)
A.Y. 2024-25
Code: 8039927
SSD: ING-INF/01

LEARNING OUTCOMES:

To introduce the student to modern sensor technologies and their major applications.

KNOWLEDGE AND UNDERSTANDING:

To make the student condition to analyze the sensor performance and to design simple sensors’ interface circuit.

APPLYING KNOWLEDGE AND UNDERSTANDING:

Capability to select sensors for each specific application MAKING JUDGEMENTS:
Evaluate in the different contexts which are the most suitable sensors and evaluate the performance using a standardized parameters set.

COMMUNICATION SKILLS:

Capability to write synthetic reports about the working principles of sensors

LEARNING SKILLS:

To learn how to solve sensors’ circuits to determine their performance and to optimally design sensor systems.

SYLLABUS:

Electronic properties of materials: semiconductors.

General properties of sensors;

Sensitivity and resolution.

Temperature sensors: thermistors, integrated sensors, thermocouples;
Mechanic sensors: Strain gauges: Introduction to MEMS: accelerometer, gyroscope, pressure and flow sensors;

Magnetic sensors;

Optical sensors: photodiodes and image sensors;

infrared sensors; interface circuits for resistive and capacitive sensors

Innovative Materials with Laboratory (blocks B-C-C1-E)

Innovative Materials with Laboratory (blocks B-C-C1-E)
1 YEAR 1 semester 6 CFU
TATA MARIA ELISA (1cfu)
COSTANZA GIROLAMO (1cfu)
VARONE ALESSANDRA (4cfu)
A.Y. 2021-22
A.Y. 2022-23
A.Y. 2023-24 (MS TEAMS)
A.Y. 2024-25 (C1-E)
Code: 8039786
SSD: ING-IND/21

LEARNING OUTCOMES:
The aim of the course is to provide an overview of novel materials recently developed and investigated for applications in mechanics, electronics, and mechatronics. Different types of materials are considered and described with particular attention on the preparation route, specific characteristics, and applications. Some of them are of basic importance for new technologies gaining increasing attention in industrial practice. The knowledge of innovative materials is strictly connected to the possibility and capability of designing new products.

KNOWLEDGE AND UNDERSTANDING:
Deep knowledge of the metallic structure and their mechanical behavior; in particular knowledge of innovative materials for mechatronics applications; selection of conventional material or not as a function of application, structure and properties.

APPLYING KNOWLEDGE AND UNDERSTANDING:
Ability to define materials properties and the most suitable production technologies for the components realization; Ability to perform tests in laboratory; Ability to define appropriate treatments in order to obtain the suitable mechanical properties as a function of service conditions. Ability to select innovative materials; ability to evaluate innovative materials properties.

MAKING JUDGEMENTS:
Ability to investigate, select and choose metallic materials as a function of the application.

COMMUNICATION SKILLS:
Clear and correct expression, in English language, skills on the topics covered in the course.

LEARNING SKILLS:

Ability to face a new problem, know how to manage it and find functional and correct solutions. learning ability will be evaluated by exam tests and laboratory activities.

SYLLABUS:

Metallurgy Fundamentals: crystal structure, defects, plastic deformation. Mechanical tests.

Amorphous alloys: production and applications of metallic glasses as mechatronic devices. Alloys with mixed structure (nanocrystalline and amorphous).

Ultrafine grained (UFG) materials: microstructural features and production routes.

Nanoporous and mesoporous materials: structural characterization and properties. Their applications for energy and gas storage.

Powder metallurgy, Additive Manufacturing Technologies.

Advanced composite materials: properties, applications and production routes.

Porous materials: metal foams, Open and closed porosity (micro and macro). Classification according to size and shape of the pores. Properties (sound, energy and vibration absorption, crash

behavior) and production methods. Functional and structural

applications: lightweight construction, automotive. Metal sandwich structures.

Functional and Smart Materials. Property change as a response of external stimulus: shape memory alloy (one-way and two-way shape memory), thermochromic, photomechanical. Energy conversion: piezoelectric, thermoelectric. Phase change materials. 

Applications: mechatronic, energy. Functionally graded materials.