Thermodynamics and Heat Transfer (block A)

Thermodynamics and Heat Transfer (block A)
1 YEAR II semester  6 CFU
Michela GELFUSA A.Y. 2021-22 (by Engineering Sciences)

A.Y. 2024-25 (last year)

Code: 80300063
SSD: ING-IND/10
(by Engineering Sciences)
  • Prerequisites: Knowledge of basic notions from physics courses, above all physical quantities, units of measurement, fundamental laws of mechanics, optics and electromagnetism.
  • Objectives:
  • LEARNING OUTCOMES: The course aims to provide students with the basic principles, physical laws, and applications of thermodynamics and heat transfer, with the dual purpose of preparing them to afford more applicative courses, and use the acquired knowledge for design and sizing simple components and thermal systems.
  • KNOWLEDGE AND UNDERSTANDING: Students will have to understand the laws of applied thermodynamics and heat transfer, and understand the structure and operation of simplest components and systems. They will also demonstrate that they have acquired the basic methodologies for verifying and designing the studied devices.
  • APPLYING KNOWLEDGE AND UNDERSTANDING: Students should be able to size and/or verify simple components and systems, such as, for example engine systems.
  • MAKING JUDGEMENTS: Students will have to acquire the autonomous ability to face subsequent studies for which this course is preparatory, and to draw up simple projects of thermal systems that use the components studied. They will also have to be able to evaluate projects drawn up by other parties, checking that the project specifications are respected. COMMUNICATION SKILLS: Students must be able to illustrate in a complete and exhaustive way the acquired information, the results of their study and of their project activity, also through the normally used means of communication (discussion of the results obtained, report on the performed activity, Power Point presentations, etc.).
  • LEARNING SKILLS: Students must be able to apply the physical laws underlying the studied phenomena, and to face further studies that use the acquired knowledge. They will have to be able to expand the already owned information through the analysis of technical-scientific literature, and to modify their curricula choosing future knowledge to be acquired on the base of their knowledge and tendency.

 

Mechanics of Materials and Structures – 6 CFU (block A-E)

Mechanics of Materials and Structures – 6 CFU (block A-E)
1 YEAR II semester  6 CFU
Andrea Micheletti

Edoardo Artioli

A.Y. 2021-22 (9 cfu)
Andrea Micheletti A.Y. 2022-23
A.Y. 2024-25 (6 cfu) – program 📑
Code: 80300064
SSD: ICAR/08
(by Engineering Sciences)

FORMATIVE OBJECTIVES

LEARNING OUTCOMES: The goal of this course, composed of two Modules, is to provide the student with basic knowledge of the mechanics of linearly elastic structures and of the strength of materials. By completing this class successfully, the student will be able to compute simple structural elements and reasonably complex structures.

KNOWLEDGE AND UNDERSTANDING: At the end of this course, the student will be able to:
– compute constraint reactions and internal actions in rigid-body systems and beams subjected to point/distributed forces and couples
– compute centroid position and central principal second-order moments of area distributions
– understand the formal structure of the theory of linear elasticity for beams and 3D bodies
– analyze strain and stress states in 3D bodies
– compute the stress state in beams subjected to uniaxial bending, biaxial bending, eccentric axial force
– understand the behaviour of beams subjected to shear with bending and torsion
– understand how to compute displacements/rotations in isostatic beam systems, how to solve statically underdetermined systems, how to apply yield criteria, and how to design beams against buckling

APPLYING KNOWLEDGE AND UNDERSTANDING: The student will apply the knowledge and understanding skills developed during the course to the analysis of practical problems. This includes the analysis of linearly elastic structures and structural members in terms of strength and stiffness.

MAKING JUDGEMENTS: The student will have to demonstrate his awareness of the modeling assumptions useful to describe and calculate structural elements, as well as his critical judgement on the static response of elastic structures under loads, in terms of stresses, strains, and displacements.

COMMUNICATION SKILLS: The student will demonstrate, mostly during the oral test, his capacity of analyzing and computing the static response of linearly elastic structures, as well as his knowledge of the underlying theoretical models.

LEARNING SKILLS: The student will get familiar with the modeling of structures and structural elements in practical problems, mostly during the development of his skills for the written test. This mainly concerns beams and three-dimensional bodies.

PREREQUISITES: The student should have already attended the basic courses of calculus, geometry, and physics.
It is required that the student has good skills with regard to differential and integral calculus, linear algebra and matrix calculations.

SYLLABUS:

Together with the other Module of this course, the following topics are covered.

Review of basic notions of vector and tensor algebra and calculus.
Kinematics and statics of rigid-body systems.
Geometry of area distributions.
Strain and stress in 3D continuous bodies and beam-like bodies.
Virtual power and virtual work equation for beams and 3D bodies.
One-dimensional beam models: Bernoulli-Navier model, Timoshenko model, constitutive equations, governing differential equations.
Constitutive equation for linearly elastic and isotropic bodies, material moduli.
Hypothesis in linear elasticity, equilibrium problem for linearly elastic beams and 3D bodies.
Three-dimensional beam model: the Saint-Venant problem, uniaxial and biaxial bending, eccentric axial force, shear and bending, torsion.
Elastic energy of beams and 3D bodies, work-energy theorem, Betti’s reciprocal theorem, Castigliano’s theorem.
Yield criteria (maximum normal stress, maximum tangential stress, maximum elastic energy, maximum distortion energy).
Buckling instability, bifurcation diagrams, load and geometry imperfections, Euler buckling load, design against buckling.
Basic notions on the finite element method and structural analysis software.

NANOTECHNOLOGY – 6 CFU

NANOTECHNOLOGY – 6 CFU
1 YEAR II semester  6 CFU
Antonio Agresti (3cfu)
Francesca De Rossi (3cfu)
A.Y. 2021-22
Antonio Agresti (3cfu)
Fabio Matteocci (3cfu)
A.Y. 2022-23
A.Y. 2023-24
Antonio Agresti (5cfu)

Sara Pescetelli (1cfu)

A.Y. 2024-25
A.Y. 2025-26 – program 📑
Code: 8039791
SSD: ING-INF/01

 

VLSI CIRCUIT AND SYSTEM DESIGN – 9 CFU

VLSI
1 YEAR II semester  9 CFU
Luca DI NUNZIO (9 cfu) A.Y. 2021-22
Luca DI NUNZIO (5 cfu)

Vittorio MELINI (2 cfu)

Sergio SPANO’ (2 cfu)

since A.Y. 2022-23 – program 📑
Alessia DI VITO (7cfu)

Gemma GILIBERTI (2cfu)

A.Y. 2025-26 – program 📑
Code: 8039166
SSD: ING-INF/01

PREREQUISITES:

It is strictly suggested to take the “Digital Electronics” exam before attending this course. You can contact Prof. Luca DI NUNZIO for any doubts regarding the topic.

LEARNING OUTCOMES:

The VLSI CIRCUIT AND SYSTEM DESIGN course aims to teach the basics of combinational and sequential circuits that represent the basic blocks of any modern digital system. In addition, the course will provide the basic concepts of the VHDL language

KNOWLEDGE AND UNDERSTANDING:

At the end of the course, the student will learn the basic concepts of combinational and sequential circuits that are the basis of any system and the basic concepts of the VHDL language useful for the design of digital systems

APPLYING KNOWLEDGE AND UNDERSTANDING:

Ability to analyze the characteristics of digital circuits with particular emphasis on timing and power consumption.

MAKING JUDGEMENTS:

The student will understand the acquired knowledge independently and critically to be able to connect and integrate the various aspects related to the design of digital systems

COMMUNICATION SKILLS:

The student must be able to communicate their knowledge acquired during the course in clear, correct, and technical language.

LEARNING SKILLS:

Ability to critically approach a digital circuit design problem, know how to manage it, and find implementation solutions using the VHDL language

SYLLABUS:

(L. DI NUNZIO)

Digital electronics basic concepts
Floating-point and fixed-point numeric representation formats
Combinatorial circuits: encoders, decoders, multiplexers
Sequential circuits: flip flops, latch registers, counters, memories
Introduction to VHDL: entity and architecture, levels of abstraction, HDL design flow, combinatorial and sequential processes, objects in VHDL test bench
Practical activities of circuit design in VHDL

(S. SPANO’)

Central unit
ALU
System registers
Address logic
System buses
Scheduler
Branching of instructions
Interrupts
Bus synchronization
RAM memories
ROM memories
Flash memories
CAM memories

 

POWER ELECTRONICS AND ELECTRICAL DRIVES – 9 CFU

POWER ELECTRONICS AND ELECTRICAL DRIVES – 9 CFU
2 YEAR 2 semester 9 CFU
Stefano Bifaretti
A.Y. 2021-22
Stefano Bifaretti (7cfu)

Cristina Terlizzi (2cfu)

A.Y. 2022-23 1st Year I semester
A.Y. 2023-24  (NOT HELD)A.Y. 2024-25
Stefano Bifaretti A.Y. 2025-26 – program 📑
Code: 8039781
SSD: ING-INF/01

LEARNING OUTCOMES:
The Power Electronics and Electrical Drives course aims to provide a basic understanding of the power semiconductors of the main electronic circuits used for the static conversion of electrical energy as well as the electrical drives. The student will acquire the ability to analyse and perform an initial sizing of power electronic converters operating in either direct or alternating current.

KNOWLEDGE AND UNDERSTANDING:
The student will be gradually guided to the knowledge of the functional characteristics and behavior of the main static power converters used, in particular, in industrial applications, in Distributed Generation Systems and in power trains of electical vehicles. In order to improve the topics understanding, the use of Matlab-Simulink specific packages for the simulation of electronic power converters is illustrated.

APPLYING KNOWLEDGE AND UNDERSTANDING:
The knowledge acquired during the course allows the student to select the topology and size of the power converter in relation to the final design.
Different application examples, in particular devoted to distributed energy generation plants, uninterruptible power supplies and electric mobility will allow the student to improve his ability to apply the acquired knowledge.

MAKING JUDGEMENTS:
The student will be able to collect and process specialized technical information on power converters and verify their validity.

COMMUNICATION SKILLS:
The student will be able to relate with power electronics specialists in order to request the technical information necessary for the development of a project activity.

LEARNING SKILLS:
The skills acquired during the course will allow the student to undertake, with a high degree of autonomy, subsequent studies or apply for technical roles in companies working in the field.

 

SYLLABUS:

POWER SEMICONDUCTORS

Power Semiconductors employed in Power Electronics converters: Diodes, BJT, MOSFET, IGBT, Thyristors, Wide Bandgap Semiconductors).

Static and dynamic behavior. Thermal behavior. Conduction and switching losses.

Technical specifications provided by manufacturers’ datasheets. Driving circuits.

POWER CONVERTER TOPOLOGIES

Behavioral characteristics: unidirectional and bidirectional energy transfer, controlled voltage sources. Analysis method of power converters.

DC-DC Converters. Buck, Boost, Buck-Boost. Switching losses reduction. Average Model. Modulation techniques (PWM, PFM, PRM). Output voltage open-loop control. Closed-loop control. Current control.Half and Full Bridge DC-DC converters.

DC-AC Converters (Inverters). Half and Full Bridge DC-AC single-phase converters based on static switches. Three-phase converters. Modulation techniques. Selective Harmonic Elimination (SHE). Sinusoidal Pulse Width Modulation (SPWM).

Rectifiers: Single-phase and three-phase diode rectifiers. Single-phase and three-phase force-commutated PWM rectifiers: topologies, voltage and current controls. Power Factor Corrector (PFC). Effects on grid side of power converters. Generalized power factor. Compliance with grid codes.
Isolated DC-DC converter.

ELECTRICAL DRIVES
Introduction to Electrical Drives. DC, Permanent Magnet Synchronous Motors and Induction Motors. DC motors model.

Power Electronics Applications

Power Converters simulation using Matlab-Simulink/Simpowersystem.
Photovoltaic Conversion Systems.
Power trains for electrical vehicles. Battery chargers.

 

ROBOT MECHANICS – 9 CFU

ROBOT MECHANICS – 9 CFU
1 YEAR (Blocks B|C)24-25
2 YEAR (Blocks A|D|E)
1 semester 9 CFU
Marco Ceccarelli (6/9 cfu)

Matteo Russo (3/6 cfu)

A.Y. 2021-22

A.Y. 2022-23

Matteo Russo (9cfu)
since A.Y. 2023-24 – program
Code: 8039785
SSD: ING-IND/13

LEARNING OUTCOMES: This course will provide students with the knowledge and tools needed to model and analyse robotic manipulators in terms of mechanical performance. Students will learn how to design, evaluate, and control industrial and service robots.

KNOWLEDGE AND UNDERSTANDING: The student will learn to analyse robotic systems by modelling their kinematics and dynamics and thus finding their key operational parameters. Furthermore, the student will learn how to design a manipulator from its operational requirements, such as workspace, velocity, and payload.

APPLYING KNOWLEDGE AND UNDERSTANDING: The student will apply this knowledge to design, model, and evaluate robots with examples of use cases. Once identified the joints and bodies that compose a robot, the student will be able to numerically characterize its operation and mobility. Furthermore, the student will be able to critically select a robot type for a given manipulation task.

MAKING JUDGEMENTS: The student will demonstrate their understanding of robot operation by developing and presenting a practical use case, in which they will examine autonomously and critically the challenges behind robot design and application.

COMMUNICATION SKILLS: During the course, students discuss key topics, working on a written project on manipulation analysis of their own choice. Project results are then presented at the end of the course.

LEARNING SKILLS: During the course, students are involved in the lecture for a continuous stimulus to verify their understanding of robot mechanics. The knowledge acquired during the course is also verified in the final project on manipulation analysis.

REQUIREMENTS: The student should have already attended the fundamental courses on calculus, geometry, and physics. The understanding of rigid body mechanics and basic programming skills (MATLAB) are required, as well as knowledge of mechanism design and analysis.

PROGRAMME:

  1. Architecture and classification of industrial and service robots
    1. Definitions: kinematic chains, joints, mobility
    2. Manipulation analysis
    3. Types of manipulators
  2. Kinematics
    1. Reference frames
    2. Denavit-Hartenberg notation
    3. Forward kinematics
    4. Inverse kinematics
    5. Jacobian and singularities
    6. Workspace
    7. Path planning
  3. Statics and dynamics
    1. Equilibrium
    2. Equation of motion
    3. Grasp mechanics
  4. Other designs
    1. Actuation technologies
    2. Parallel robots
    3. Compliant robots
    4. Soft and continuum robots

EXAM:

The exam is divided into a written and oral test. The written test consists of three exercises regarding practical use-cases of industrial and service robots. In alternative, a project report developed during the course can be evaluated. In the oral test, the student will discuss with a critical perspective robot functioning. In alternative, the developed project on manipulation analysis can be presented and discussed.

INTEGRATED SENSORS – 9 CFU

INTEGRATED SENSORS – 9 CFU
1 YEAR (Block A|C|D|E)
2 YEAR (Block B)24-25

1 YEAR (All Block 25-26)

1 semester 9 CFU
Corrado Di Natale A.Y. 2019-20 (new name, ex Electronic Devices and Sensors)
Alexandro Catini (6cfu)
Corrado  Di Natale (3cfu)
A.Y. 2022-23
A.Y. 2023-24
Alexandro Catini (8cfu)
Corrado  Di Natale (1cfu)
A.Y. 2024-25 – program
Code: 8039927
SSD: ING-INF/01