CONTROL OF MECHANICAL SYSTEMS

CONTROL OF MECHANICAL SYSTEMS
2 YEAR
1 semester 9 CFU
Riccardo MARINO Since 2019-20
Code: 8039823
SSD: ING-INF/04

LEARNING OUTCOMES:

Ability to understand scientific papers on the control of mechanical systems

KNOWLEDGE AND UNDERSTANDING:

Knowledge of dynamic modeling of mechanical systems. Knowledge of basic feedback control techniques for single input single output systems and of decoupling techniques for multi input multi output nonlinear systems

APPLYING KNOWLEDGE AND UNDERSTANDING:

Ability to simulate using Matlab Simulink complex controlled mechanical systems

MAKING JUDGEMENTS:

Ability to evaluate stability, robustness, and performance of a control system

COMMUNICATION SKILLS: Ability to present and discuss an autonomous design project

LEARNING SKILLS: Ability to fully understand a scientific paper on the control of mechanical systems

SYLLABUS:

BASIC CONTROL TOOLS
Bounded- input bounded- output linear systems. Pole placement theorem for controllable and observable linear systems. Luenberger observers for observable systems. Design of dynamic compensators for linear systems. Integral feedback control to reject constant disturbances. PID control. System inverses for minimum phase linear systems. The combination of feedback and feedforward control actions.
ADVANCED CONTROL TOOLS
Linear approximations of nonlinear control systems about operating conditions. The definition of region of attraction for an operating condition. Output feedback compensators with integral actions to control nonlinear systems about a given operating condition. Liapunov matrix equations to determine quadratic Liapunov functions and assess the region of attraction. The definition of the sensitivity transfer function and its properties. The gang of four: sensitivity, complementary sensitivity, load sensitivity and noise sensitivity functions. How to determine the robustness of a control loop using the gang of four functions. Bode’s integral formula and the limitations imposed by unstable open loop poles. Youla parametrization to design stable compensation. Kalman filters, Riccati equations and robust control design.

CONTROL DESIGN FOR MULTIVARIABLE NONLINEAR SYSTEMS
Relative degree for a single input single output nonlinear system. State feedback control design for input-output linearization. State feedback linearization when the relative degree is equal to the state space dimension. The definition of nonlinear inverse systems. Relative degrees or decoupling indices for multivariable (multi-input, multi-output) nonlinear systems. The definition of the decoupling matrix. State feedback control design for input-output linearization when the decoupling matrix is full rank using the Penrose pseudoinverse. State feedback linearization when the sum of relative degrees is equal to the state space dimension and the decoupling matrix is full rank.

CASE STUDIES OF NONLINEAR MECHANICAL CONTROL SYSTEMS
Control of bycicles, robots, vehicles and aircrafts

Machine Design (block A)

Machine Design (block A)
2 YEAR II semester  6 CFU
Luciano CANTONE A.Y. 2023-24
(by Engineering Sciences)
Code: 80300065
SSD:

LEARNING OUTCOMES: Designing mechanical components considering the need to save weight, material and energy while respecting safety, to promote the usefulness and social impact of the designed product.
KNOWLEDGE AND UNDERSTANDING: The design of mechanical systems, in particular, basic knowledge of the design methodologies of important machine components.
APPLYING KNOWLEDGE AND UNDERSTANDING: Know how to recognise, distinguish, and use the main techniques and tools to design mechanical components.
MAKING JUDGEMENTS: Students must assume the missing data of a problem and be able to independently formulate basic hypotheses (such as that on safety coefficients) based on the operational and functional context of the system/component they have to design.
COMMUNICATION SKILLS: Transfer information, ideas and solutions to specialist and non-specialist interlocutors through intensive use of English terminology.
LEARNING SKILLS: Students, by learning the basics of design, acquire the tools to learn the necessary design techniques of systems/components not directly addressed during the course.

VERIFICATION CRITERIA

Solution of the assignments given during the teaching. The written exam consists of 4 exercises, similar to those solved during the lessons. After passing the written test, there is an oral examination with two questions. The student’s evaluation is related to the understanding and mastery of the principles and methods of design for both written and oral exams.
The oral exam questions aim to ascertain the student’s knowledge and reasoning skills in connecting the different topics covered within the course.
The final vote of the exam is expressed out of thirty and follows the next graduation system:
Not pass, essential deficiencies in the knowledge and understanding of the topics; limited capacity for analysis and synthesis, frequent generalizations and limited critical and judgmental capacity, the topics are set out inconsistently and with inappropriate language
18-21, the student has acquired the basic concepts of the discipline and has an analytical capacity that emerges only with the teacher’s help. The way of speaking and the language used are, on the whole, correct.
22-25, the student has acquired the basic concepts of the discipline discreetly, knows how to orient himself or herself among the various topics covered and has an autonomous analysis capacity that knows how to express with the correct language.
26-29, the student has a well-structured knowledge base. He/She can independently rework the knowledge acquired in the context of the choice of conventional and unconventional materials according to the application; the way of speaking and the technical language are correct.
30 and 30 cum laude, the student has a complete and in-depth knowledge base. The cultural references are rich and up-to-date, expressed with brilliance and properties of technical language.

The midterm tests are optional and allow you to avoid the oral examination with an overall mark of at least 18/30.

Syllabus

Consolidation of basic knowledge to put the student in the right conditions to face a generic machine design problem: Mechanical Engineering design in Broad, Perspective, Load Analysis, Materials, Static Body Stresses, Elastic strain, Deflection, Stability (Eulerian buckling), Vibrations (beam Eigen-modes), Failure Theories,Safety Factors, Reliability, High cycles Fatigue, Low cycles Fatigue, Surface Damage, Contact and impact problems. During the course, several design activities will be demonstrated by exercises and by real life applications.

TEXTS

Machine Component Design, 7th Edition International Student Version Robert C. Juvinall – (University of Michigan), Kurt M. Marshek (University of Texas at Austin)
Teacher’s slides

POWERTRAIN TECHNOLOGIES FOR FUTURE MOBILITY (ex Internal Combustion Engines)

POWERTRAIN TECHNOLOGIES FOR FUTURE MOBILITY (ex Internal Combustion Engines)
1 YEAR (Block C)

2 YEAR (Blocks A|B|D|E)

II semester  9 CFU
Stefano CORDINER (6/9 cfu)
Lorenzo BARTOLUCCI (3/9 cfu)
A.Y. 2021-22

Internal Combustion Engines

Since A.Y. 2022-23

POWERTRAIN TECHNOLOGIES FOR FUTURE MOBILITY

Code: 80300079
SSD: ING/IND/08
(by Mechanical Engineering)

PREREQUISITES: Technical Physics, Fluid Machinery

FORMATIVE OBJECTIVES

LEARNING OUTCOMES:

The course aims to provide students with in-depth scientific training to correctly address the problems of designing, choosing and managing new propulsion systems for sustainable mobility starting from current solutions with internal combustion engines as well as creating the conditions for the development of innovative and low environmental impact solutions. To this end, students will develop in-depth knowledge of the operating principles of propulsion systems for transport and will learn simulation procedures for their verification and sizing. Finally, particular attention is dedicated to the most recent technological development of internal combustion engine technology aimed at overcoming current limits in terms of emissions and efficiency and defining innovative scenarios for sustainable mobility.

KNOWLEDGE AND UNDERSTANDING:
Course aim is to provide the students with tools for the analysis of the performances and the evaluation of proper design solution for internal combustion engines and their core components. At the end of the course, the student will be able to independently understand the functional link between design variables and the performance of internal combustion engines also in case of innovative design,

APPLYING KNOWLEDGE AND UNDERSTANDING:
The course, through the analysis of specific problems and quantitative data, is aimed at providing the tools for analysis and evaluation of the effects of different design choices. The theme of energy efficiency and pollution reduction are at the heart of the teaching organization. The student will be able to interpret and propose design solutions, even innovative ones, adapted to the specificity of the problems that are presented to him.

MAKING JUDGEMENTS:
By studying theoretical and practical aspects of engine design and critically assessing the influence of different design variables, the student will be able to improve his judgment and proposal in relation to design. and the management of internal combustion engines.

COMMUNICATION SKILLS:
The presentation of the theoretical and application profiles underlying the operation of internal combustion engines will be carried out to allow the knowledge of the technical language of the appropriate specialist terminology; The development of communication skills, both oral and written will also be stimulated through classroom discussion, participation in seminary activities and through final tests.

LEARNING SKILLS:
The learning capacity, even individual, will be stimulated through numerical exercises, the drafting of papers on specialized topics, the discussion in the classroom, also aimed at verifying the actual understanding of the topics treated. The learning capacity will also be stimulated by integrative educational aids (journal articles and economic newspapers) in order to develop autonomous application capabilities.

SYLLABUS:

Legislation evolution on Internal Combustin Engines. Definition of the performance of the propulsion systems and their operating characteristics in relation to the mission, driving cycles. Generalities on reciprocating internal combustion engines: Characteristics and classification, thermodynamic and performance analysis of reciprocating internal combustion engines.
Air supply for 4-stroke engines: volumetric efficiency and its evaluation; Design elements of intake systems: quasi-stationary effects; valve sizing; influence of other engine parameters; Variable Valve Actuation systems. 2-stroke engines: construction schemes; Non-stationary phenomena in intake and exhaust ducts: inertia and wave propagation; variable geometry systems; calculation models; Supercharging.
In cylinder charge Motion: Turbulence; swirl, squish, tumble; stratified charge engines.
Traditional and alternative fuels; Properties of motor fuels. Generalities: combustibles; stoichiometric air; calorific value Gaseous fuels: natural gas, hydrogen and mixtures. bio-ethanol, bio-diesel and DME. Characteristics and their use in engines: technical solutions, performance and emissions.
Fuel supply Premixed combustion engines; Non-pre-mixed combustion engines.
Combustion : Analytical elements of combustion; thermodynamics of combustion processes; calculation of the chemical composition and of the adiabatic equilibrium temperature ; transport phenomena ; chemical kinetics.
Pollutant emissions and abatement systems; Emissions: formation mechanisms, effects on health and the environment, measurement of emissions; influence of engine parameters; Innovative combustion solutions, Advanced Thermodynamic Cycles. Sustainable mobility. Operating principles of hybrid vehicles: series and parallel solution; motors a.c. and electrical employees; regenerative braking; lithium batteries, performance and prospects. Plug-in hybrid vehicles, i.c. engines “range extender”. Innovative control logics for optimal powersplitting between the different energy sources. Electric vehicles, characteristics and prospects. Numerical simulation tools will be presented for all course topics

ATTENDANCE

Course attendance is strongly recommended. During the course, students are invited to interact with the Professor during the class or office hours for any clarification or insight in specific topics related to the program.

POWER ELECTRONICS AND ELECTRICAL DRIVES

POWER ELECTRONICS AND ELECTRICAL DRIVES
2 YEAR 2 semester 9 CFU
Stefano Bifaretti
A.Y. 2021-22
Stefano Bifaretti (7cfu)

Cristina Terlizzi (2cfu)

A.Y. 2022-23 1st Year I semester
A.Y. 2023-24  (NOT HELD)

A.Y. 2024-25

Code: 8039781
SSD: ING-INF/01

LEARNING OUTCOMES:
The Power Electronics and Electrical Drives course aims to provide a basic understanding of the power semiconductors of the main electronic circuits used for the static conversion of electrical energy as well as the electrical drives. The student will acquire the ability to analyse and perform an initial sizing of power electronic converters operating in either direct or alternating current.

KNOWLEDGE AND UNDERSTANDING:
The student will be gradually guided to the knowledge of the functional characteristics and behavior of the main static power converters used, in particular, in industrial applications, in Distributed Generation Systems and in power trains of electical vehicles. In order to improve the topics understanding, the use of Matlab-Simulink specific packages for the simulation of electronic power converters is illustrated.

APPLYING KNOWLEDGE AND UNDERSTANDING:
The knowledge acquired during the course allows the student to select the topology and size of the power converter in relation to the final design.
Different application examples, in particular devoted to distributed energy generation plants, uninterruptible power supplies and electric mobility will allow the student to improve his ability to apply the acquired knowledge.

MAKING JUDGEMENTS:
The student will be able to collect and process specialized technical information on power converters and verify their validity.

COMMUNICATION SKILLS:
The student will be able to relate with power electronics specialists in order to request the technical information necessary for the development of a project activity.

LEARNING SKILLS:
The skills acquired during the course will allow the student to undertake, with a high degree of autonomy, subsequent studies or apply for technical roles in companies working in the field.

 

SYLLABUS:

POWER SEMICONDUCTORS

Power Semiconductors employed in Power Electronics converters: Diodes, BJT, MOSFET, IGBT, Thyristors, Wide Bandgap Semiconductors).

Static and dynamic behavior. Thermal behavior. Conduction and switching losses.

Technical specifications provided by manufacturers’ datasheets. Driving circuits.

POWER CONVERTER TOPOLOGIES

Behavioral characteristics: unidirectional and bidirectional energy transfer, controlled voltage sources. Analysis method of power converters.

DC-DC Converters. Buck, Boost, Buck-Boost. Switching losses reduction. Average Model. Modulation techniques (PWM, PFM, PRM). Output voltage open-loop control. Closed-loop control. Current control.Half and Full Bridge DC-DC converters.

DC-AC Converters (Inverters). Half and Full Bridge DC-AC single-phase converters based on static switches. Three-phase converters. Modulation techniques. Selective Harmonic Elimination (SHE). Sinusoidal Pulse Width Modulation (SPWM).

Rectifiers: Single-phase and three-phase diode rectifiers. Single-phase and three-phase force-commutated PWM rectifiers: topologies, voltage and current controls. Power Factor Corrector (PFC). Effects on grid side of power converters. Generalized power factor. Compliance with grid codes.
Isolated DC-DC converter.

ELECTRICAL DRIVES
Introduction to Electrical Drives. DC, Permanent Magnet Synchronous Motors and Induction Motors. DC motors model.

Power Electronics Applications

Power Converters simulation using Matlab-Simulink/Simpowersystem.
Photovoltaic Conversion Systems.
Power trains for electrical vehicles. Battery chargers.

 

ROBOT MECHANICS

ROBOT MECHANICS
1 YEAR (Blocks B|C)
2 YEAR (Blocks A|D|E)
1 semester 9 CFU
Marco Ceccarelli (6/9 cfu)

Matteo Russo (3/6 cfu)

A.Y. 2021-22

A.Y. 2022-23

Matteo Russo A. Y. 2023-24
A.Y. 2024-25
Code: 8039785
SSD: ING-IND/13

LEARNING OUTCOMES: This course will provide students with the knowledge and tools needed to model and analyse robotic manipulators in terms of mechanical performance. Students will learn how to design, evaluate, and control industrial and service robots.

KNOWLEDGE AND UNDERSTANDING: The student will learn to analyse robotic systems by modelling their kinematics and dynamics and thus finding their key operational parameters. Furthermore, the student will learn how to design a manipulator from its operational requirements, such as workspace, velocity, and payload.

APPLYING KNOWLEDGE AND UNDERSTANDING: The student will apply this knowledge to design, model, and evaluate robots with examples of use cases. Once identified the joints and bodies that compose a robot, the student will be able to numerically characterize its operation and mobility. Furthermore, the student will be able to critically select a robot type for a given manipulation task.

MAKING JUDGEMENTS: The student will demonstrate their understanding of robot operation by developing and presenting a practical use case, in which they will examine autonomously and critically the challenges behind robot design and application.

COMMUNICATION SKILLS: During the course, students discuss key topics, working on a written project on manipulation analysis of their own choice. Project results are then presented at the end of the course.

LEARNING SKILLS: During the course, students are involved in the lecture for a continuous stimulus to verify their understanding of robot mechanics. The knowledge acquired during the course is also verified in the final project on manipulation analysis.

REQUIREMENTS: The student should have already attended the fundamental courses on calculus, geometry, and physics. The understanding of rigid body mechanics and basic programming skills (MATLAB) are required, as well as knowledge of mechanism design and analysis.

PROGRAMME:

  1. Architecture and classification of industrial and service robots
    1. Definitions: kinematic chains, joints, mobility
    2. Manipulation analysis
    3. Types of manipulators
  2. Kinematics
    1. Reference frames
    2. Denavit-Hartenberg notation
    3. Forward kinematics
    4. Inverse kinematics
    5. Jacobian and singularities
    6. Workspace
    7. Path planning
  3. Statics and dynamics
    1. Equilibrium
    2. Equation of motion
    3. Grasp mechanics
  4. Other designs
    1. Actuation technologies
    2. Parallel robots
    3. Compliant robots
    4. Soft and continuum robots

EXAM:

The exam is divided into a written and oral test. The written test consists of three exercises regarding practical use-cases of industrial and service robots. In alternative, a project report developed during the course can be evaluated. In the oral test, the student will discuss with a critical perspective robot functioning. In alternative, the developed project on manipulation analysis can be presented and discussed.

INTEGRATED SENSORS

INTEGRATED SENSORS
1 YEAR (Block A|C|D|E)
2 YEAR (Block B)
1 semester 9 CFU
Corrado Di Natale A.Y. 2019-20 (new name, ex Electronic Devices and Sensors)
Alexandro Catini (6cfu)
Corrado  Di Natale (3cfu)
A.Y. 2022-23
A.Y. 2023-24
Alexandro Catini (8cfu)
Corrado  Di Natale (1cfu)
A.Y. 2024-25
Code: 8039927
SSD: ING-INF/01

LEARNING OUTCOMES:

To introduce the student to modern sensor technologies and their major applications.

KNOWLEDGE AND UNDERSTANDING:

To make the student condition to analyze the sensor performance and to design simple sensors’ interface circuit.

APPLYING KNOWLEDGE AND UNDERSTANDING:

Capability to select sensors for each specific application MAKING JUDGEMENTS:
Evaluate in the different contexts which are the most suitable sensors and evaluate the performance using a standardized parameters set.

COMMUNICATION SKILLS:

Capability to write synthetic reports about the working principles of sensors

LEARNING SKILLS:

To learn how to solve sensors’ circuits to determine their performance and to optimally design sensor systems.

SYLLABUS:

Electronic properties of materials: semiconductors.

General properties of sensors;

Sensitivity and resolution.

Temperature sensors: thermistors, integrated sensors, thermocouples;
Mechanic sensors: Strain gauges: Introduction to MEMS: accelerometer, gyroscope, pressure and flow sensors;

Magnetic sensors;

Optical sensors: photodiodes and image sensors;

infrared sensors; interface circuits for resistive and capacitive sensors